

D4.2.2 – FINAL SYSTEM PROTOTYPE

AND USER MANUAL

Release 1.0

2014.08.01

Short Description

D4.2.2 will update D4.2.1 taking into account the lessons learned from the first evaluation

cycle

Authors - Contributors

Almende, UnivPM, Fraunhofer, VTT, UniKassel, Cofely, CNet Svenska, UPC

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

 ii

EXECUTIVE SUMMARY

The purpose of this deliverable is to report on the final SEAM4US system prototype, and it

includes a thorough description of the architecture as well as an extensive explanation, aimed

at users and developers, about how to setup the system. This document is an updated version

of D4.2.1 (delivered at month 24), which presented only a preliminary version of the system

since several components still had to be finalized and integrated.

The overall result of the combined effort of the consortium partners can be considered

satisfactory. The system has been built according to the specifications of D4.1 ('System

specification report', delivered at month 12) and no considerable divergence from the

expected outcome needs to be reported.

The synergistic development of the different components has led to a smooth integration

phase, which has been successfully carried out during the last year of the project. This result

is particularly remarkable: such a complex system made of heterogeneous components

developed sometimes from scratch (e.g., the Graphical User Interface and the CCTV-based

crowd density estimator) and other times tailoring existing products (e.g., the LinkSmart

middleware) works effectively to perform an intelligent control of the devices (fans, lights,

and escalators) of the pilot station of Passeig de Gracia - L3. All technical (such as the

interfaces with the existing TMB HW/SW systems) and non-technical (such as the legal

aspects) issues have been successfully tackled.

It is important to emphasize that the only interaction between the SEAM4US users (i.e.,

project engineer and station manager, as defined in D4.1) and the system is via a

straightforward Graphical User Interface, which is fully documented in this deliverable.

However, we have decided to add additional information regarding the setup of the system,

such as a user manual for the LinkSmart middleware and for the CCTV-based crowd density

estimator. This choice has been made to encourage the reuse of the components in future

projects as well as to document in a transparent way the work done.

Finally, this deliverable complements two other deliverables: D3.2.2 ('Final user, thermal,

and control models'), which describes the details of the two main subsystems of SEAM4US

('Control' and 'Models') as well as the 'Monitoring' subsystem, and D5.1.2 ('Final energy

management system deployment handbook'), which describes all details of the hardware. The

three of them together give a comprehensive vision of all the hardware, software, and

algorithmic parts of the system. In order to facilitate the reading, this deliverable is

relatively short, as we have preferred conciseness to redundancy and references to

repetitions. The result is a succinct report, which thoroughly illustrates the more relevant

aspects of our work; the less relevant, yet interesting, details (such as the description of the

events and the methods) have been moved to dedicated appendices.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

 iii

CONTENTS

EXECUTIVE SUMMARY .. II

CONTENTS ... III

FIGURES .. V

TABLES .. VII

1. INTRODUCTION ... 8

2. FINAL SEAM4US SYSTEM ARCHITECTURE.. 9

3. LINKSMART MIDDLEWARE.. 12

3.1. NETWORK MANAGER ... 12

3.2. SUPERNODE .. 13

3.3. EVENT MANAGER ... 14

4. MONITORING PROXIES .. 15

4.1. ENVIRONMENTAL MONITORING NETWORK PROXIES .. 15

4.1.1. Setup of the AMPASE platform in SEAM4US .. 15

4.1.2. Environmental sensor proxies ... 16

4.1.3. Sensor network management UI .. 17

4.1.4. Software and protocols .. 18

4.1.5. Time synchronization ... 19

4.1.6. Duty cycling .. 19

4.1.7. Routing .. 21

4.2. CCTV PROXY AND CCTV-BASED CROWD DENSITY ESTIMATOR .. 21

4.2.1. Working principles .. 22

4.2.2. Calibration ... 22

4.2.3. Algorithms for crowd density estimation ... 24

4.2.4. Using the crowd density estimator .. 27

4.3. TRAIN ARRIVAL PROXY ... 27

4.4. WEATHER FORECAST PROXY ... 28

4.5. ENISTIC METERS PROXY .. 28

4.6. SOCOMEC METERS PROXY .. 30

4.7. SACI METERS PROXY ... 31

5. ACTUATOR PROXIES .. 33

5.1. FAN PROXY .. 33

5.2. LIGHT PROXY .. 34

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

 iv

5.3. ESCALATOR PROXY ... 34

6. GRAPHICAL USER INTERFACE ... 35

6.1. STATION MAP TAB ... 36

6.2. MONITORING DATA TAB .. 38

6.3. CONTROL TAB ... 40

7. SUPERVISION ... 41

7.1. ARCHITECTURE .. 41

7.2. THE SUPERVISABLE INTERFACE ... 42

7.3. WORKING PRINCIPLES .. 43

8. REPRESENTATIONS .. 45

8.1. SPATIAL REPRESENTATION ... 45

8.2. EVENT REPRESENTATION ... 46

9. DATABASE AND DATABASE MANAGEMENT ... 48

10. CONCLUSIONS .. 51

APPENDIX A - EVENT FORMAT .. 52

A.1 RAW DATA .. 52

A.1.1. Raw data for monitoring ... 52

A.1.2. Raw data for actuators ... 57

A.2 POSTPROCESSED DATA .. 59

A.2.1. Postprocessed data for monitoring ... 59

A.2.2. Postprocessed data for control ... 66

A.3. DB ACCESS EVENTS .. 67

APPENDIX B – METHODS .. 69

B.1 ACTUATORS .. 69

B.3 LINKSMART ... 71

GLOSSARY AND ABBREVIATIONS ... 73

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

 v

FIGURES

Figure 1. Final SEAM4US system architecture .. 9

Figure 2. LinkSmart configuration page ... 13

Figure 3. Setup of the SEAM4US environmental monitoring network .. 16

Figure 4. Sensor network device proxy GUI .. 17

Figure 5. Environmental monitoring network management UI .. 18

Figure 6. AMPASE main network protocols timeline .. 20

Figure 7. Battery replacement interval of nodes .. 21

Figure 8. Flowchart of the calibration phase of the crowd density estimation algorithms 22

Figure 9. GUI for the initialization of the ROI (left) and the perspective correction (right). 23

Figure 10. (left) Input frame used as input image in the rest of this section; (right) trained background. 23

Figure 11. Flowchart of the crowd density estimation algorithm. ... 24

Figure 12. Binary image of the foreground (left) before and (right) after noise removal 24

Figure 13. (left) Output of 'Canny edge detection' on the combined RGB channels (right) AND operation

of the Canny edge detection and the foreground image after noise removal, see Figure 12. 25

Figure 14. (left) Logic OR between the foreground mask and the edge image; (right) dilated and eroded

image in which blobs of people are segmented. .. 25

Figure 15. Examples of CCTV mulfunctioning: (left) occluded camera; (right) scratched camera 26

Figure 16. Topology of the existing CCTV system deployed at PdG-L3 station ... 26

Figure 17. SQLite event storage .. 30

Figure 18. SQLite Key/Value storage .. 30

Figure 19. Communication between the SEAM4US Server and a SOCOMEC meter via the TMB network . 30

Figure 20. Differences between Modbus TCP and Modbus RTU messages .. 31

Figure 21. SOCOMEC address map ... 31

Figure 22. Communication between the SEAM4US Server and a SACI meter via the TMB network 32

Figure 23. Fan proxy communication between the server and the new devices .. 33

Figure 24. User identification screen to access the GUI: each SEAM4US role has different credentials 35

Figure 25. Example of check on the GUI functionality .. 35

Figure 26. 'Station map' tab showing the position and values of all sensors ... 36

Figure 27:. 'Station map' tab showing the position and values of selected sensors 37

Figure 28. Historical values of a selected sensor .. 37

Figure 29. The chart of the historical values can also be printed or downloaded in multiple formats 38

Figure 30. Example of historical values for a consumption sensor ... 38

Figure 31. Values of one sensor in the 'monitoring data' tab ... 39

Figure 32. Values of multiple sensors in the 'monitoring data' tab .. 39

Figure 33. Example of the SEAM4US GUI 'control' tab ... 40

Figure 34. Architecture of the SEAM4US system supervisor component ... 41

Figure 35: Static data structure of the supervisable interface.. 42

Figure 36: Workflow of a supervision cycle .. 43

Figure 37. Example of a supervisor alert mail .. 44

Figure 38. SEAM4US nomenclature applied over the station model .. 45

Figure 39. Topology of the PdG-L3 station represented with the SEAM4US spatial zones......................... 46

Figure 40. Structure of the SEAM4US storage DB .. 48

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

 vi

Figure 41. EventItem DB table .. 48

Figure 42. Context DB table .. 48

Figure 43. ObservableProperty DB table .. 49

Figure 44. Observation DB table ... 49

Figure 45. Event flow through the EventManager ... 49

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

 vii

TABLES

Table 1. Messages of the AMPASE platform .. 18

Table 2. Template for the event format of SEAM4US raw data ... 47

Table 3. Raw data format for the solar radiation ... 52

Table 4. Raw data format for the anenometers ... 53

Table 5. Raw data format for the differential pressure .. 53

Table 6. Raw data format for the absolute pressure .. 54

Table 7. Raw data format for the PM10 (lower concentrations).. 54

Table 8. Raw data format for the PM10 (higher concentrations) .. 54

Table 9. Raw data format for the CO2 ... 55

Table 10. Raw data format for the temperature .. 55

Table 11. Raw data format for the humidity .. 56

Table 12. Raw data format for the power consumption .. 56

Table 13. Raw data format for the occupancy ... 57

Table 14. Raw data format for the train arrivals .. 57

Table 15. Raw data format for the escalator speed ... 58

Table 16. Raw data format for the fan frequency .. 58

Table 17. Raw data format for the fan control status .. 59

Table 18. Postprocessed data format for the air change rate .. 59

Table 19. Postprocessed data format for the air flow rate .. 60

Table 20. Postprocessed data format for the air speed .. 60

Table 21. Postprocessed data format for the PM10 ... 61

Table 22. Postprocessed data format for the CO2.. 61

Table 23. Postprocessed data format for the absolute pressure .. 62

Table 24. Postprocessed data format for the temperature .. 62

Table 25. Postprocessed data format for the humidity .. 63

Table 26. Postprocessed data format for the power consumption .. 63

Table 27. Postprocessed data format for the passenger occupancy .. 64

Table 28. Postprocessed data format for the frequency of the trains .. 64

Table 29. Postprocessed data format for the weather station ... 64

Table 30. Postprocessed data format for the weather forecast ... 65

Table 31. Postprocessed data format for the fan frequency .. 66

Table 32. Postprocessed data format for the fan control status .. 67

Table 33. Postprocessed data format for the update of the passenger occupancy 67

Table 34. Format for the DB request .. 67

Table 35. Format for the DB response .. 68

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

8

1. INTRODUCTION

The finalization of the SEAM4US system has required a considerable effort from all partners,

yet the outcome is rewarding: the current system has been fully integrated and tested. The

results of its application to the pilot are currently under evaluation, and they will be reported

in the deliverables of WP6. Remarkably, the project has succeeded in building up an effective

architecture starting from some very limited existing resources in terms of HW (e.g., the

AMPASE platform developed by VTT) and SW (e.g., the LinkSmart middleware developed by

CNET and FIT) thanks to the synergistic work of the partners, which have contributed with

their expertise to steer the implementation to a scientifically sound and technically

innovative direction.

This deliverable describes in detail the components of the final architecture (except for those

reported in D3.2.2 and D5.1.2, as it will be explained below) and illustrates the rationale

behind it. The result is a robust distributed system that not only works effectively but also

interacts smoothly with the existing TMB subsystems, such as the TMB SCADA (also called with

the Spanish acronym TMB CCIF) and the actuators already deployed at the pilot station. The

information given in this deliverable updates the one presented in D4.2.1 and complements

the one presented in D3.2.2 and D5.1.2. It is also important to emphasize that this

deliverable describes the Graphical User Interface, which is the only way in which the

SEAM4US users (i.e., project engineer and station manager, as defined in D4.1) can interact

with the system (additional interfaces have been built for the developers).

The structure of this document reflects the one of the architecture. Therefore, it starts with

a brief overview of the final SEAM4US architecture in Sec. 2, and it follows with one section

per subsystem, except for the monitoring network and the actuators (which have been

described in D5.1.2) and the monitoring, control and the models (which have been described

in D3.2.2). Therefore, Sec. 3 is about the LinkSmart middleware and its setup; Sec. 4 gives

the details of the monitoring proxies; Sec. 5 discusses the actuator proxies; Sec. 6 concerns

all aspects of the Graphical User Interface. The rest of the document is devoted to the parts

of the system that are not directly involved into the definition of the best control policies,

but that are necessary for having a working system. In particular, they are the supervisor,

discussed in Sec. 7; the representations of space and events, discussed in Sec. 8; the

database and the database management, discussed in Sec. 9. As usual, the last section, Sec.

10, includes the conclusions and the final remarks.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

9

2. FINAL SEAM4US SYSTEM ARCHITECTURE

The SEAM4US architecture was first specified in D4.1 but it has undergone a revision, whose

result in shown in Figure 1.

Figure 1. Final SEAM4US system architecture

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

10

The final version is composed of several subsystems, which are described in the rest of this

deliverable. However, in the following we give a general overview of each subsystem, in

order to illustrate in short the working principles of the SEAM4US system.

SEAM4US relies on several data sources, most of which are deployed at the Passeig de Gràcia –

Line 3 (PdG-L3) station (energy consumption network, environmental monitoring network,

and CCTV monitoring) and one of which is provided by a 3rd party (i.e., weather forecast).

The main function of the whole monitoring network, whose details have been described in

D5.1.2, is to collect information about the station, the passengers, and the external

environment. A summary of the sensors and devices of the monitoring network is reported in

Appendix A.

The data gathered from the sources are then processed by the monitoring proxies (see Sec.

4), which are software modules (of different complexities) that interface the 'real world' with

the SEAM4US system. In general, they provide some methods to access the monitoring data

and map them into the standard SEAM4US format (see Appendix B).

The next layer of the architecture contains all monitoring components that filter and

aggregate the data of the monitoring network. This subsystem is composed of six

components: energy, pollutants, thermal, air flow, trains, weather, occupancy.

The next layer of the architecture contains the two most important subsystems of the

architecture, both of them described in D3.2.2. The first one is the models that contains two

components: the station model, which includes a calibrated model of the station based on

the real data coming from the lower layers, and the passenger model, which includes a model

of the passenger occupancy and flows. The other main SEAM4US subsystem is the control

that, based on the inputs of the monitoring and the models, calculates the best (in terms of

energy consumption and passenger comfort) parameters of the controlled devices. The

control can also disable other subsystems in case of malfunctioning.

The interface between the control subsystem and the actuators is performed by the actuator

proxies (see Sec. 5), which map the SEAM4US control events into the appropriate control

signals required by the actuators.

Besides those mentioned above, the SEAM4US system relies on additional components that are

used to interact with the users (i.e., the graphical user interface, see Sec. 6), monitor the

SEAM4US subsystems (i.e., the supervisor, see Sec. 7), describe the representation of space

and events (i.e., the representations, see Sec. 8), and store/retrieve data (i.e., the database

and the database management, see Sec. 9).

The interface among all subsystems is performed by the LinkSmart middleware (see Sec. 3).

The SEAM4US components pull or push information to other components resulting in a loose

coupling, which is a key requirement for such a highly distributed system. Pulling information

is done either through OSGi interfaces or through web service calls; both are inherent

properties of LinkSmart. Pushing information is done through the publish/subscribe

functionality, which is provided by the LinkSmart Event Manager; of course, data can also be

pushed via remote procedure calls, using setter methods. These characteristics, together with

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

11

the networking functionality (LinkSmart Network Manager), make LinkSmart the ideal 'glue' of

the system, stretching throughout all architectural layers.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

12

3. LINKSMART MIDDLEWARE

Several components of the LinkSmart middleware (which is the main result of the Hydra

project1) have been used in SEAM4US. Some of them could be used right away; others had to

be extended to fit our system. Also, new technologies, which can be also framed within

LinkSmart, have been developed.

As central components for the data distribution, we have used the original Network Manager

as well as the Supernode. Several device proxies have been implemented, which include

proxies for environmental monitoring network and energy consumption monitoring network as

well as proxies for the weather forecast service and the CCTV subsystem. We extended the

original LinkSmart proxy concept from a pure translator to an encapsulated representation of

the sensor. This includes hiding push or pull communication to the sensor as well as

administering meta-information, such as the location. The Event Manager is the component

that has been extended most: apart from revising the event structure, we added

functionalities for storing every sent event to a database. In order to make the Network

Manager and the Event Manager more independent from each other, we have also added

subscription persistence to both components.

In the following sections, we describe the functionalities and the configuration of the three

LinkSmart components used in SEAM4US: Network manager, Supernode, and Event manager.

3.1. Network manager

The core LinkSmart components are packed as a binary distribution .zip, which can be

downloaded, unpacked, and used as OSGi target platform. The source code can also be

downloaded and complied from the LinkSmart repository at

https://svn.code.sf.net/p/LinkSmart/code

To unfold the full power of security, LinkSmart makes use of the Java Cryptography Extension

for unlimited strength encryption. In order to enable this feature, the following needs to be

done:

 Download Java Cryptography Extension Unlimited Strength Jurisdiction Policy Files 6

 Unpack and copy the two files local_policy.jar and US_export_policy to the

following location depending on your operating system

o On Windows, if you have both, a JDK and JRE installation, copy the files to both:

%PATH_TO_JDK\jre\lib\security and %PATH_TO_JRE\lib\security

o On MacOS X, the security options should be OK as shipped with the OS. If you have any

issues, copy the above mentioned files to $JAVA_HOME/lib/security

1 The Hydra project is co-funded by the European Commission within the Sixth Framework

Programme in the area of Networked Embedded Systems under contract IST-2005-034891. See also
http://www.hydramiddleware.eu/

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

13

LinkSmart can be executed thanks to a start-up script which is provided both for Windows

(.bat) and MAC (.sh). Alternatively, LinkSmart can be started within Eclipse. If everything has

been set up correctly, then a website like the one shown in Figure 2 will appear if the

configuration page http://localhost:8082/LinkSmartStatus is called from the

browser.

Figure 2. LinkSmart configuration page

On the left side of the configuration page, we find a configuration option for each component

that has enabled it. For instance, the Network Manager configuration can be accessed in the

'eu.LinkSmart.network' tab where the Network Manager name or HID can be modified. The

top tab called 'Network Manager Status' shows an overview of the Network Managers in the

same LinkSmart network plus detailed information like HID or IP address. These are the two

options that should be usually configured when setting up LinkSmart on a computer for the

first time in order to make the Network Manager individual. The HID will be used to find the

Network Manager in the LinkSmart network. An overview of the provided services can also be

requested.

3.2. Supernode

The Supernode bundle is available at

 https://svn.code.sf.net/p/LinkSmart/code/components/NetworkManagerSuperNode

A run script (run_bg.sh) can be found in the main folder. After starting the bundle, a

directory named NetworkManagerSuperNode is created. Going to the config folder, there

is the configuration file NM.properties, which consists of two lines to configure the

external address where the Supernode will be located:

extAddrHttp=<ip_address>:<port>

and

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

14

extAddrTcp=<ip_address>:<port>

There are certain ports that must be opened in the NAT/Firewall for the server IP address.

Ports can be changed. The last step is to configure the seeds.txt of all the Network

Managers that shall connect to the supernode with the seeds:

http://<extAddrHttp>

and

tcp://<extAddrTcp>

defined in NM.properties.

We added a call of run_bh.sh to /etc/rc.d/rc.local in order to start the Supernode

automatically after reboot.

3.3. Event manager

The Event Manager is available at:

http://svn.code.sf.net/p/LinkSmart/code/branches/1.2/components/DotNetCoreMidd

leware/EventManager/

This version needs to be compiled first in a normal .NET/Visual Studio environment. The

binaries can be found in the subfolder \EventManager\bin\Debug

No matter where one got the binaries from, the Event Manager has to be configured first by

opening the file EventManager.exe.config and modify the description name of the Event

Manager by changing the value of the EventManagerDesc setting. A name that is unique in

the network should be used (e.g., EventManager:<yourName>). If one is not using a

NetworkManager on the same machine, the address of the NetworkManager also needs to be

changed by adjusting the value of the

EventManager_NetworkManager1_NetworkManagerApplicationService setting.

Start-up:

 Start the LinkSmart OSGi Configuration, including the Network Manager and your

publisher and subscriber bundles

 Start the Event Manager last (and make sure to start it as an administrator)

 The Event Manager first shows an empty window, then it displays the subscriptions

 Published events are displayed as they are arriving at the Event Manager. They are

now distributed to the subscribers

For publishing and subscribing to events from OSGi, there are two wrapper libraries

(EventPublicationWrapper and EventSubscriptionWrapper) that provide an API that

allows to subscribe to a particular topic at a configurable Event Manager and publishing an

event to an Event Manager, respectively, with a one-line command.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

15

4. MONITORING PROXIES

SEAM4US proxies integrate low-level technologies and provide access to devices and

subsystems via the LinkSmart web service layer; they can be developed either in Java or

.NET. Thanks to this approach, in principle the SEAM4US components can be used in other

environements besides the pilot project, since with LinkSmart every proxy translates

whatever underlying technology it abstracts into web services.

As shown in Figure 1, there are seven different kinds of monitoring proxies: the

environmental monitoring proxies (described in Sec. 4.1), the CCTV proxy (described in Sec.

4.2), the train arrival proxy (described in Sec. 4.3), the weather forecast proxy (described in

Sec. 4.4), and the three proxies of the 'smart meters' of the energy consumption monitoring

network. In particular, the Enistic meters (described in Sec. 4.5), which measure lightning,

ventilation, switch board, AC validation machines, and auxiliary supply; the SOCOMEC meters

(described in Sec. 4.6), which measure the escalator movement; the SACI meters (described

in Sec. 4.7), which measure the main supply (a throughout description of the devices of the

energy consumption monitoring network is provided in D3.2.2).

4.1. Environmental monitoring network proxies

In the SEAM4US environmental monitoring, the challenge is to provide a large multihop sensor

network in which the maintenance costs due to battery replacements and network

management is optimized. For this purpose, we have chosen to use wireless sensoring, which

is often needed when appropriate communication and power infrastructure are not available

or the sensoring is temporary. During SEAM4US, the consortium has carried out some research

on wireless sensor networks (WSN) regarding beyond state-of-the-art energy-efficient

solutions, specifically by dual-radio approach. Nevertheless, since the developed solutions are

not mature enough for large scale deployment in the pilot project, we have resorted to

deploy a more conventional solution called AMPASE which has been adjusted to the project

needs. For the sake of the readers', this section includes not only an explaination about the

proxies, but also a decription of the main characteristics of the AMPASE platform.

4.1.1. Setup of the AMPASE platform in SEAM4US

AMPASE is a platform for advanced wireless sensoring developed by VTT. It provides low

maintenance costs, easy setup and management interfaces, automatic recovery, alert

functions, and low energy consumption protocols and hardware. The examples of enabling

features are online parameter changing for each sensor node independently for measurement

interval, transmission interval and encryption as well as over-the-air-programming to re-

program sensor nodes remotely. The SEAM4US environmental monitoring network setup is

shown in Figure 3.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

16

Figure 3. Setup of the SEAM4US environmental monitoring network

There are two types of wireless nodes: sensor nodes, which communicate through ZigBee

radio (IEEE 802.15.4) with other nodes providing multihop capability; gateway node, which

communicates with the WSN gateway through RS485 forwarding mote originated

measurement data to WSN Gateway and WSN Gateway originated management data to motes.

Sensor nodes may contain multiple sensors for environmental measurements and transceivers

to communicate with the gateway node as well as with other sensor nodes. The exception to

this setting is the weather station component, which is a special type of environmental

monitoring component based on a single off-the-shelf product. It sends the measurement data

through a RS485 link to the gateway server.

4.1.2. Environmental sensor proxies

The sensor network device proxy running in the WSN gateway provides the interface between

LinkSmart and the sensors of the environmental monitoring. This component has two main

functions: it forwards the sensors' measurements data to the upper layers of the SEAM4US

architecture and it interfaces the sensor network management UI (see Sec. 4.1.3) with the

sensors. The supporting functions include providing the time synchronization for the sensor

nodes and determining the operational status of the sensors based on the received

transmissions from the sensor nodes that are stored in a local MySQL database in the Gateway

Server. The component is connected to the Gateway Node through a RS485 connection to

enable wireless communication to the sensor nodes (see Figure 3). Since the component is

written in Java, the Java Runtime Environment is required on the computer in which the

device proxy is running, as well as a MySQL Server. The setup of the component is done

through two files distributed along with the executable and support libraries.

The sensor network device proxy implements also a GUI, shown in Figure 4, which includes

information about the received sensor node transmissions, the state of the sensor network,

and some debugging prints within the component.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

17

Figure 4. Sensor network device proxy GUI

4.1.3. Sensor network management UI

A dedicated UI is developed for the sensor network management purposes, depicted in Figure

5. It uses XML-RPC interface provided by the sensor network device proxy to enable control

and monitoring of the each sensor and sensor node deployed. It can be used to explore the

local sensor database and check the sensor node status. The remote configuration options

available through the UI for each sensor independently are: 1) measurement and transmission

intervals; 2) measurement types: periodic, threshold event, on-request; 3) reset and over-

the-air re-programming. The management UI is written in Qt so the running platform is

capable of running Qt applications.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

18

Figure 5. Environmental monitoring network management UI

4.1.4. Software and protocols

The software in the gateway node and sensor nodes are running on Contiki OS, which is an

open-source operating system written in C under development since 2002. It provides

functions such as memory handling, event processing, energy usage profiling and protocols for

medium access control, multihop communications, and duty cycling for multiple embedded

hardware platforms in addition to generic network applications.

The AMPASE platform provides a low level sensoring interface with the sensor nodes. The

AMPASE sensoring interface is message based and the messages are described in Table 1

among with Contiki OS based messages. The AMPASE management software provides also

XMLRPC interface for optional sensoring user but since the sensor network may be configured

statically though MySQL database this interface is not described here.

Table 1. Messages of the AMPASE platform

Message Origin Destination Source Description

A-PNP Node Gateway Server AMPASE
Register Node and the sensors it
contains to the network

A-REQC
Gateway
Server

Mote AMPASE
Set the configuration parameters
for each Node

A-REPC Node Gateway Server AMPASE
Acknowledge the configuration
parameters received from A-
REQC message

A-DATA Node Gateway Server AMPASE Send measurement data

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

19

A-REQDATA
Gateway
Server

Mote AMPASE Request data from sensors

A-PROG
Gateway
Server

Mote AMPASE Re-program motes over-the-air

A-ACK Node Gateway Server AMPASE
Acknowledge reception of A-
PROG message

A-SYNC
Gateway
Server

Mote AMPASE Synchronize the clocks in network

C-RREQ Node Mote CONTIKI Find a multihop route

C-RREP Node Mote CONTIKI Establish a multihop route

4.1.5. Time synchronization

The WSN gateway, the gateway node, and the sensor nodes are time synchronized based on

the WSN gateway clock, which is maintained by a standard Network Time Protocol (NTP). The

time synchronization is required in the sensor nodes to timestamp each measurement that

may be transmitted later towards the gateway server. Furthermore, the time synchronization

allows us to use more energy efficient duty-cycling protocols. The time synchronization is

achieved through periodic broadcast transmissions initiated by the gateway node (the

gateway node receives the timestamp periodically from gateway server through RS485

connection). The broadcast packet includes a timestamp that indicates the current time.

Each node forwards the packet, which contains an updated timestamp. The update is

required because of transmission and packet handling delays in the nodes.

The accuracy of the time synchronization protocol is usually about 20ms, which was found

convenient because the time resolution of the nodes is 10 ms. However, the accuracy

depends on difference of ambient conditions between nodes and the time update interval.

For example, 20 ms accuracy can be easily achieved if the update interval is 5 minutes and

the ambient conditions do not change drastically in the network because of time-counting 32

KHz crystals included in the nodes.

4.1.6. Duty cycling

Duty cycling is the one of the main techniques to achieve extended battery lifetime in the

wireless sensor nodes. The challenge is to enable the node to stay in low-energy consuming

mode (i.e., sleep mode) as long as possible. In the sleep mode, the energy consumption is

minimized by turning off MCU, radio, and other components, basically enabling only some

volatile memory components and the oscillators. However, the sleep mode must often be

exited to normal operating mode (i.e., active mode) for actions such as enabling data

processing, measurements, data transmissions, and routing of other node’s transmission in

case of multihop routing.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

20

AMPASE duty cycling protocols are operating both in medium access control and application

layers. The Contiki medium access control implementation (ContikiMAC) enables a continuous

duty cycled operation, which puts the node in sleep mode most of the time while ensuring

that it is reachable by other nodes in the network. It is based on periodic sampling of the

radio interface. In the default configuration, it turns on the node to active mode every 125

ms for few milliseconds to find out if there are transmissions to be received. Therefore, each

transmission must be repeated a number of times to be sure that the receiving node is in

active mode during the transmissions. In unicast transmissions it is possible to optimize the

number of required transmissions for instance by storing the duty cycle phase of the

neighbour nodes or timing the transmission based on this information. However, broadcast

transmissions must be sent extensive number of times in order to ensure that all reachable

nodes will be in active mode during the transmissions.

The ContikiMAC duty cycling is enhanced in the application layer by turning the ContikiMAC

off during network idle periods and keeping the node in sleep mode if no data processing is

needed. The idle periods occur when no node in the network is transmitting. They are

determined in the application layer from the nodes’ transmission interval configuration

option, which is the interval the node sends measurement results to the gateway node. The

absolute time instant when the interval begins is based on the time synchronization

information; therefore, nodes with the same interval have also synchronized interval

beginning times. From the transmission intervals, the sensor network device proxy is able to

determine the highest common nominator (i.e., network transmission interval of all

configured transmission intervals in the nodes) that defines the times when the whole

network must be in active mode to enable multihop routing. The network transmission

interval is provided to the nodes in the time synchronization packets. During each network

transmission interval, the nodes operate in active mode for 15 seconds while remaining in

sleep mode rest of the time if no data processing is needed. The following timeline illustrates

the functions during the 15 seconds period while the ContikiMAC is on.

Figure 6. AMPASE main network protocols timeline

When utilizing the described duty cycle protocols, the battery replacement interval depends

mainly on the network transmission interval. In practice, each node is configured with a

multiple of smallest transmission interval needed in the network to optimize the network

transmission interval. The following figure depicts the battery replacement interval based on

following parameters neglecting energy consumed during data processing in sleep mode:

• Battery capacity: 2,900 mAh (3 V, assuming linear discharge profile)

• Sleep mode current consumption: 0.02 mA

00:00 15:00

[s:10
-2

s]

00:00

Duty-cycled MAC start

00:00 - 05:00

Time synchronization

Primary route to gateway formation

05:00 - 10:00

Data transmissions

Primary route to node formation

Secondary route to gateway formation

15:00

Duty-cycled MAC stop

10:00 - 15:00

Node configuration

Data requests

Secondary route to node formation

02:30

Gateway sends

timesync msg

02:50 05:00

Data tx random

access start

11:00

Data req

start

10:00

Node conf

start

07:19

Data tx random

access end

07:50

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

21

• Active mode current consumption: 30 mA

• ContikiMAC duty cycle: 5%

Figure 7. Battery replacement interval of nodes

4.1.7. Routing

The routing is based mainly on time synchronization broadcast packets and data

transmissions. The primary method of determining the multihop route towards the gateway

node is to monitor the sent time synchronization packets. They include a link quality

information – based on received LQI and hop count of the packet, which is updated each time

it is rebroadcasted. Therefore, the nodes are able to determine the best up-to-date route

towards the gateway node in the beginning of each network transmission interval. The

primary method of determining the route toward each sensor node is based on the data

transmissions. When the gateway node receives a data transmission or a sensor node is

requested to forward a packet towards the gateway node, the last hop information is stored

in the node’s routing table leading to up-to-date end-to-end multihop path. This path is also

best in terms of link quality, if the radio communication between each Node is reciprocal.

The secondary method of determining the multihop routes happens if the Node wants to

transmit a packet but a suitable route is not found from the routing table. In this case,

Contiki mesh multihop routing is utilized which is based on AODV-type of on-demand routing

protocol involving broadcast route-request packets and unicast route-reply packets.

4.2. CCTV proxy and CCTV-based crowd density estimator

The CCTV-based crowd density estimator is the main source of data for modeling the

passenger's behaviors and it is based exclusively on the video streams of the CCTV

surveillance system already existing at the pilot station, as described in D5.2.2. Thanks to an

accurate design of the video processing algorithms, it has been possible to achieve a good

accuracy in estimating the crowd (less that 20% of error, which means that in general the

density monitored is within ±2 people range from the actual one). This component has been

developed using the C++ OpenCV libraries but, as all other SEAM4US architectural monitoring

components, it publishes the results of the video processing on the SEAM4US database via the

LinkSmart middleware thanks to standard Java-based OSGi modules. The CCTV proxy then is

0

2

4

6

8

10

12

0,5 3 5,5 8 10,5 13 15,5 18 20,5 23 25,5 28

B
at

te
ry

 r
e

p
la

ce
m

e
n

t
in

te
rv

al
 [

ye
ar

]

Network transmission interval [min]

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

22

simply an interface towards the crowd density estimator, which are then described in more

detail later in the rest of this section.

4.2.1. Working principles

The video streams of the PdG-L3 CCTV suirvellance cameras are combined by a video recorder

into one carousel video composed of sections of the individual videos appearing in a

predefined order (both the duration of the video sections and the order of appearance of the

cameras can be modified). The video recorder is controlled by using the Real Time Streaming

Protocol (RTSP) and it can be accessed via the command

const std::string videoStreamAddress = "rtsp://127.0.0.1:8554/";

The video flow transmission occurs via a widely employed standard (i.e., H.264 over RTP).

This carousel video stream is then processed using advanced computer vision algorithms to

estimate the amount of people focused by each camera. Such algorithms are described in

detail in the following, together with a brief summary of the calibration phase, which is

necessary to have a reliable result.

A number of specific actions to minimize the legal/ethical implications of using CCTV data

have been taken. In particular, the crowd density estimation algorithms work in real time

(i.e., the processing time is less that 1/10 of a second) and hence there is no need to store

the CCTV data – since they are processed on the fly – or to show them on screen – since the

crowd estimation system does not need any human intervention to work. Also, the CCTV

proxy and the whole software running the computer vision algorithms are located on a

dedicated computer, which is only accessible via the TMB intranet by using ad hoc

credentials; additional software to prevent unwanted intrusions can be easily installed on

such computer.

4.2.2. Calibration

The main goal of the calibration is to setup (or retrieve, in case the information is already

available) all data concerning the regions of interest (ROI) and the perspective correction of

each camera. Also, during the initialization phase the OCR (whose purpose will be specified

later in this section) and the background detection are trained. The flowchart of the

calibration is shown in Figure 8.

Figure 8. Flowchart of the calibration phase of the crowd density estimation algorithms

By definition, the 'regions of interest' include all the parts of the frame relevant to the

passenger detection thus excluding all the areas (walls, tracks etc.) in which human beings

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

23

are not supposed to be. The setup of the ROI has a two-fold purpose: first, it reduces the

amount of data to process, and hence it speeds the algorithm up; second, it prevents the

algorithm to be fed with noise coming from uninteresting areas of the frame. In case there

are no data available for the ROI of a given camera, the SEAM4US project engineer (see D4.1

for a definition of the SEAM4US roles) can set it via the user interface shown in Figure 9: it is

sufficient to select manually the areas to exclude from the image processing algorithms. A

similar mechanism has been created for the perspective correction, which of course needs to

be different for each camera. The perspective correction is one of the most complex

operations in the whole algorithm; considering that cameras may focus a relatively large

area, any video processing not considering the perspective information is prone to large

errors. In case there are no data available about it, the SEAM4US project engineer can

manually set it up via the user interface in Figure 9.

Figure 9. GUI for the initialization of the ROI (left) and the perspective correction (right).

Besides the ROI and the perspective correction, also the OCR is trained during the calibration

phase. Its main purpose is to recognize from what camera the video carousel starts, even

though it is also used throughout the execution of the crowd density estimation algorithms in

order to verify what frame is currently processed. The last operation of this phase is the

background detection, which is simply done by observing what pixels remains unchanged for

several frames belonging to different temporal section. Similarly as the OCR, this operation is

done once during the initialization of the system, but it is also repeated at the beginning of

each new video section to retrain the background since changes (including malfunctioning of

the cameras) may occur. An example of the background extraction performed via the

standard OpenCV C++ function is shown in Figure 10.

Figure 10. (left) Input frame used as input image in the rest of this section; (right) trained background.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

24

4.2.3. Algorithms for crowd density estimation

In general, motion detection in indoor environments can be performed by using either the

optical flow or a combination of edge detection and background subtraction. However, in the

first case it is necessary to assume that the image intensity is constant throughout time,

which is unfortunately not the case in the case of the SEAM4US project. Comprehensive tests,

reported in D4.2.1, have proved that the optical flow approach can fail dramatically in this

context resulting in a very noisy image. Therefore, in order to improve the accuracy of the

algorithms we have resorted to use a combination of edge detection and background

subtraction. The flowchart of the algorithm is shown in Figure 11.

Figure 11. Flowchart of the crowd density estimation algorithm.

The first step of our algorithm consists in retraining the image background with a Gaussian

blur which reduces the noise in the image. Several frames (approximately ten) are used

during the initialization of the background. The following step consists in extracting the

foreground and removing the noise thanks to a simple erosion algorithm (see Figure 12), after

which the foreground mask is created.

Figure 12. Binary image of the foreground (left) before and (right) after noise removal

In parallel to the process described above, we detect the edge of the whole image by

applying the 'Canny edge detection' on the three RGB channels of the original image; the

results acquired the different channels are then combined via a simple logic OR. Eventually,

the intersection of this image with the dilated foreground mask (obtained using a logic AND)

allows us to extract the edges of the foreground only (see Figure 13).

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

25

Figure 13. (left) Output of 'Canny edge detection' on the combined RGB channels (right) AND operation of the

Canny edge detection and the foreground image after noise removal, see Figure 12.

The last step of the crowd density detection algorithm consists in combining this last image

with the foreground mask via a logic OR and to refine the result by dilating (and then eroding)

the segmented the blobs (see Figure 14).

Figure 14. (left) Logic OR between the foreground mask and the edge image; (right) dilated and eroded image in

which blobs of people are segmented.

At this point, the actual image processing algorithm is finished, and it remains to apply the

perspective correction (whose parameters have been set during the initialization phase) and

finally relate the size of the blobs to the actual number of people in them.

It is important to emphasize that robustness is a major issue in the CCTV-based crowd density

estimation algorithms, also due to vandalism. Therefore, we have performed a comprehensive

analysis of the video frames that correspond to anomalous activities and we have integrated

this information into our system. There three emblematic cases (camera/transmission broken,

camera occluded, and camera damaged) that our video processing algorithms must be able to

handle. While in all cases a warning is issued to the hardware maintenance team, in some

cases the algorithms can continue to run, even though performances may deteriorate. Still, in

case the camera affected overlaps with others working properly, the overall impact of the

malfunctioning component will be mitigated by the compensation mechanisms between

cameras of the same areas. In case of a broken transmission or camera, the video recorder

sends a ‘blue screen’ to the CCTV proxy. This event is relatively rare; it is handled by

discarding the image and issuing a warning to the hardware (HW) maintenance team via the

supervisor (see Sec. 7). In case of an occluded camera (see Figure 15, left), part of the screen

may be perceived as background and, due to the difference to previously recorded

background images for the same camera, the algorithms discard the image and issue a

warning to the HW maintenance team. In case of a scratch on the camera (see Figure 15,

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

26

right), the image can still be processed, but the starch is now considered as part of the

background.

Figure 15. Examples of CCTV mulfunctioning: (left) occluded camera; (right) scratched camera

Thorough tests have showed that the robustness of the algorithm is very close to 100%; a

scratche on the camera is the hardest problems to detect since it is in principle

undistinguishable from a person standing still within the area focused by the camera (which

for instance happens on the platform while waiting for the train). However, we have

introduce a buffer time of a few minutes after which an absolute still object becomes part of

the background and hence it is ignored by the algorithm.

Before writing the data on the SEAM4US database, it is necessary to perform yet another step

to aggregate the crowd density estimations coming from the individual cameras according to

zones. For instance, the whole platform in each direction is considered as one zone even

though it contains multiple cameras. Not all zones are covered by the CCTV system, but this

happens only for 13 of them, as evident from Figure 16. The overlap occurs only between

cameras 00 and 01 in zone TL3.1, between cameras 04 and 05 in zone TL3.2, and between

cameras 32 and 33 in zone SLb.

Figure 16. Topology of the existing CCTV system deployed at PdG-L3 station

Finally, the outcome of the CCTV-based crowd density must be written to the SEAM4US

database, according to entry described in the appendix. The time and date for the videos are

extracted from the local computer operating system and, since the video processing is done

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

27

in real time, they will correspond to the actual ones of the videos. If needed, the OCR

system, whose main goal is to synchronize the carousel video stream, can also be used for this

purpose.

4.2.4. Using the crowd density estimator

In general, the crowd density estimator does not need to interact with any user, as it runs in

background getting data directly from the video stream and publishes the results of the video

processing on the SEAM4US database. However, in this section we give a few notes about the

requirements and the setup of the system.

Currently, the crowd density estimator runs on a standard general purpose PC, with a dual-

core processor and 4 GB of RAM. From the software point of view, the following software

needs to be installed on the local computer:

 MinGW C++ compiler (which provides the libraries used by the software);

 OpenCV 2.4.6 (the main C++ library used in the CV algorithms);

 CMake GUI (GUI used by the C++ program);

 FFMPEG (used by OpenCV to handle videos);

 VLC media player (necessary to Access the video stream).

All software is available for free, no license is required. The necessary programs are included

in the folder provided with the crowd density estimator software. In order to be able to run

the crowd density estimator, the user needs to make the following steps:

1) Install the VLC, FFMPEG and Cmake using the installers available at:

a. http://www.videolan.org/vlc/index.html

b. http://www.ffmpeg.org/

2) Follow steps 1 – 16 on:

a. http://nenadbulatovic.blogspot.nl/2013/07/configuring-opencv-245-eclipse-cdt-

juno.html

The setup is also strightforward, and it includes the following steps:

1) Run VLC media player

a. Select Stream from file menu

b. In network, enter the URL rtsp://172.25.44.217/camera-1 and press Stream

c. Set destination to RTSP and uncheck display locally.

d. Start stream

2) Run seam4us.exe, which contains all code of the crowd density estimator.

4.3. Train arrival proxy

The task of this component is to publish on the LinkSmart middleware the arrival time of the

next train based on the information retrieved from an appropriate data source, which can be

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

28

static (e.g., a .xls file containing the train schedule for the whole day) or dynamic (e.g., a

real-time update about the train schedule provided by the TMB operation department). In the

current version, the component parses a static .xls file containing the train schedule for each

day of the year, and it iteratively publishes a new event (according to the event format

defined in Appendix A) every time that a new train arrives.

This component has been implemented in Java as a OSGi-component and it consists of two

Java files: trainSchedule.java and TrainArrivalEventPublisherImpl.java. The

first file manages the train schedule and calculates the time of the next train whereas the

second publishes the event implements the supervision interface, which enables the

supervisor to monitor the status of the train arrival component.

4.4. Weather forecast proxy

Weather forecasts are obtained from the external web-service wunderground.com©, which

provides hourly forecasts in JSON format for the weather station closest to the PdG-L3

location (i.e., Barcelona LBL Airport). The weather API service (called Cumulus Plan) allows

up to 10 calls per minute with a maximum of 500 calls per day, which is enough to cover the

maximum prediction horizon that we expect to use. The provider currently updates the

weather forecast and current conditions every hour.

The weather forecast service is accessed from within the access-restricted TMB network

thanks to a proxy, which is configured in LinkSmart Status (see Sec. 3). Every time that a new

forecast is retrieved, an event is sent via LinkSmart. The parsing of weather data in JSON

format is done by JSON Java library working together with Google GSON library for Java.

Forecast data are finally accessed by the methods that retrieve the corresponding values of

the returned Java object. The Java package that manages the weather forecast service is

encapsulated into a WeatherForecast Java library that exposes some public classes,

properties and methods. In order to stay within the limitations of the service and at the same

time to have always updated data, the java bundle does an automatic poll of the web service

with a poll rate of 180s.

4.5. Enistic meters proxy

Data from the Enistic meters are relayed to the SEAM4US server through the UDP proxy

located in the low voltage room, whose only purpose is to forward broadcast UDP packets as

unicast UDP packets towards the SEAM4US Server for further processing. All packages

originate from the smart meters and are sent on UDP port 53005.

To receive and process data from the UDP proxy, the program EnisticUDPReceiver.exe

has to be started. This application is written in C# and processes the data from Enistic smart

meters for redistribution and storage.

In short, processing of the Enistic data means parsing UDP packages and converting them into

relevant measurement data. The Enistic data format is dependent of the controller version,

and the receiver is capable of receiving data on the following Enistic formats:

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

29

Enistic new version format:

10:54:31.17 Enistic:0050C2F4C21F:

D1:W:13/5/2007/10/54/31;S:000D6F0001A3D676,P=D2,@=23,W=0000,U=34,C=13,M=22

4,V=015:~3B

Enistic old version format:

Enistic:0004A3BB5D35:EWAPI:000D6F0001A3E7AB:L=0,T=0,M=214,U=290,E=0,W=2290

0,C=12,P=D2

All the Enistic sensors of SEAM4US use either the 'new version' or the 'old version' format.

Enistic smart meters send voltages, status messages and more, but the important values

consist of controller, serial, apparent power and channel. Using the 'old version format', these

values represent “Enistic:”, “ EWAPI:”, “U=”, “C=”. Real power is not used because the

Enistic smart meters calculate it from the apparent power and the power factor it finds

between its energy supply wave and the intensity of the circuit. Since the power supply is not

the same for the device and the measured load, the power factor is not correct. Therefore,

we use the apparent power and the PF that was measured with the electrical analyser.

Enistic devices have different clamp sizes that must be taken into account when processing

data. This configuration is performed in a file called EnisticMapping.xml located in the

EnisticUDPReceiver folder. In order to correctly read data from the device, each smart

meter must have an entry on the following format.

smartmeter serial="000D6F0001A3D62E" id="1" panel="P1">

<powerline code="3NC-3" category="escalator:1" where="access"

powerfactor="0.71">

 <channel id="11" size="15"/>

 <channel id="12" size="15"/>

 <channel id="13" size="15"/>

</powerline>

</smartmeter>

It is evident that each smart meter has its own entry specifying the serial number, the sensor

ID within the SEAM4US system, and the cabinet panel where this smart meter is installed. The

clamp size for each of the up to 16 channels of the smart meter in use is specified, grouped

by the power line they are attached to (according to the number of phases).

After processing in EnisticUDPReceiver, relevant data are stored locally in the database and

then published to LinkSmart Event Manager (see Sec. 3.3). Note that the Graphical User

Interface (described in detail in Sec. 6) uses the data sent to LinkSmart Event Manager and

not the local SQLite database.

The local storage in SQLite is being done in separate databases, one for each measuring

point/channel of the Enistic energy meters. These databases can be found in

C:\IoTDeviceDBs\Enistic\NewFormat on the server and follow the name conventions

‘SM-4_3.s3db’, where ‘SM-4’ stands for Smart Meter 4 and the ‘3’ means channel 3. Data are

both stored as events (see Figure 17) and key/value pairs (see Figure 18), similar to the

SQLite storage of the LinkSmart Event Manager.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

30

Figure 17. SQLite event storage

Figure 18. SQLite Key/Value storage

4.6. SOCOMEC meters proxy

Data from the SOCOMEC meters are received and processed at the SEAM4US Server by

SocomecDevice.exe (SOCOMECdevice, hereafter), which is an application written in C#.

The communication of the SOCOMEC meters with the TMB network is done via an Ethernet

interface (see Figure 19), which is configured to use Modbus TCP on IP address 172.25.44.220

using default port 502. Multiple meters can be attached to one Ethernet interface, according

to standard Modbus systems, each with unique identification numbers; in particular, SEAM4US

uses two Socomec Diris A10 meters, one for each escalator.

Figure 19. Communication between the SEAM4US Server and a SOCOMEC meter via the TMB network

According to the Modbus TCP protocol, the communication is always initiated by the server

and the response is sent by the gateway/device, which forces SOCOMECdevice to use polling

as primary measurement method. Polling is performed at most each second, but only on

active power which can be expanded if needed. Accumulated values are sent to the

LinkSmart Event Manager (see Sec. 3.3) after 1-2 minutes. SOCOMECdevice always waits

exactly one second before performing a new Modbus request, which means that another

request is not started until the first one finishes plus one second. This is to ensure that the

requests are not stacked and that the TMB network is not overloaded. After approximately 1

min, an average of the latest values are calculated and then sent to the LinkSmart Event

Manager for further processing and storage. SOCOMECdevice does not use any SQLite local

storage as backup, consumption data is solely sent to the LinkSmart Event Manager which

ensures that the data is stored correctly. Therefore, LinkSmart Event Manager needs to be

started in order for SOCOMECdevice to successfully save consumption data. SOCOMECdevice

also handles cases where the network connection is cut off, or single errors in the library,

which implies that there is no need to restart the application after a network, malfunction.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

31

The Modbus connection itself is performed through an open-source Modbus TCP library

capable of performing all the necessary requests. Modbus TCP is much similar to the regular

Modbus, except for a main difference illustrated in Figure 20. A request consists of three

fields: i) unitID, ii) function code, iii) address; for instance, ID:2 FUNCTION:3

ADDRESS:790.

Figure 20. Differences between Modbus TCP and Modbus RTU messages

Figure 21 is an example of the most relevant parameters which can be accessed through

Modbus interface and Socomec Diris A10. Address 790 returns the active power across all the

phases and is currently the only value needed, and it is thus reported to the LinkSmart Event

Manager. All of the values presented in Figure 21 uses FUNCTION 3.

Figure 21. SOCOMEC address map

With help of Figure 20 and Figure 21, it is then easy to conclude that the previously

mentioned request (ID:2 FUNCTION:3 ADDRESS:790), reads (FUNCTION:3) active power

(ADDRESS:790) from the device 2 (ID:2).

4.7. SACI meters proxy

Data from the SACI meters are received and processed at the SEAM4US Server by

SACIDevice.exe, similarly as for the SOCOMEC meters (see Sec. 4.6). Also the access to the

TMB network, which is shown in Figure 22, resembles the one of the SOCOMEC meters, since

it is done via an Ethernet interface. The SACI Ethernet interface (etherGATE) is configured to

use Modbus TCP with IP address 172.25.44.216 and port 502. Multiple SACI meters can be

attached to the etherGATE, but SEAM4US uses only a single SACI MAR 144.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

32

Figure 22. Communication between the SEAM4US Server and a SACI meter via the TMB network

The communication occurs exactly as in SOCOMEC implementation: accumulated values are

sent to LinkSmart Event Manager each minute, and the underlying Modbus TCP connection is

performed using the same library. As explained above, no SQLite backup storage is used and

the LinkSmart Event Manager must be started in order for values to be processed further.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

33

5. ACTUATOR PROXIES

The systems driving the three actuators (fans, escalators, lights) are described in detail in

D5.2.2. Therefore, in the following we will discuss about actuators proxies, which run on the

SEAM4US server, and give a brief introduction about the functionalities of each actuator

within the SEAM4US pilot.

5.1. Fan proxy

The SEAM4US fan pilot consists of a modification of the fans PLC so that each fan (two located

at the platforms and two located in the tunnels, in the pilot project) can be driven

continuously in the ranges [-45 Hz,-25 Hz] and [25 Hz, 45 Hz] or stopped (0 Hz). In the original

system, each fan could only be driven off (i.e., at 0 Hz) or on (i.e., at 45 Hz). Fans are driven

by Beckhoff BK9050 Ethernet couplers with input and output modules connected to the

existing fan frequency variators as well as to the TMB SCADA system (also known via the TMB

Spanish acronym CCIF) through a switching logic as shown in Figure 23. Besides controlling the

fans, this system is also used to forward the values measured by the anemometers in each

fan’s duct.

Figure 23. Fan proxy communication between the server and the new devices

The switching logic build on physical relays allows us to switch between the SEAM4US control

and the 'standard' control of the TMB CCIF through the new Beckhoff modules. It is important

to emphasize that only the TMB CCIF control can toggle between the two modes whereas the

SEAM4US control can indicate to the TMB CCIF that it is ready to take over the control and

without activating itself. From the practical point of view, the operator has to explicitly allow

SEAM4US to take over the control each time that it has been returned or deactivated. If the

communication is interrupted for more than 10 seconds, then the hardware automatically

returns to a default state triggered by the watchdog in which the control is automatically

returned to the TMB CCIF.

The fan control is implemented as an OSGi bundle running in the LinkSmart environment.

Within this bundle, each fan to be controlled is addressed separately and their outputs can be

driven between 0 V and 10 V, mapping the whole range of operational frequencies of the

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

34

fans. The bundle polls each Beckhoff device at least two times per second using the MODBUS

TCP protocol, which has been described in Sec. 4.6.

5.2. Light proxy

The SEAM4US lighting pilot consists of a deployment, in some parts of the station as described

in D5.1.2, of LED lamps that are controllable through the DALI protocol, which assigns an

address to each light (also called, node) and allows us to control each light individually, e.g.,

switching it on and off or setting the dimming level. Each node can be assigned to one or

multiple groups in order to control the lighting by zones.

A DALI gateway from Orama Inc. has been installed in the station and it is integrated to the

SEAM4US system thanks to a LinkSmart device proxy, which provides the following

functionalities: i) request a list of nodes; ii) request a list of zones; iii) request the

assignment of nodes to zones; iv) request the current switching status and dimming level for

each node; v) set switching status and dimming level for individual nodes, or entire zones.

The assignment of nodes to groups is done manually or programmatically through the web

interface of the DALI Gateway. The DALI proxy is implemented in Java based on the

LinkSmart/OSGi-framework. Within the framework, it provides the service called 'DALIProxy'.

5.3. Escalator proxy

The SEAM4US escalator pilot consists of a modification of the escalator, which allows the

SEAM4US controller to select dynamically the escalator speed. Before SEAM4US, the escalator

was always running at 0.5 m/s (unless, of course, it was switched off). Thanks to SEAM4US,

the escalator speed can be set to 0.5 m/s where there is a intense passenger load or 0.4 m/s

when there is a moderate passenger load). Additionally, radars systems have been installed to

detect when no passenger is using the escalator, which is then stopped altogether. This

allows the escalator to stop altogether when no passengers are on it whereas when the radars

are not active the escalator is running at 0.2m/s (see D3.2.2 for more details). As explained

in D5.1.2, a dedicated Beckhoff PLC provides the signal about the speed to the escalator

actuator, which actually changes the speed only when there are no people on the escalator,

due to safety issues.

The escalator LinkSmart proxy is implemented in Java based on the LinkSmart/OSGi-

framework and it communicates with the Beckhoff PLC using the Modbus/TCP protocol, which

has been already discussed in Sec. 4.6. Within the framework, it provides the service called

'EscalatorProxy'. The main functions of the proxy are to set the escalator speed selection

signal, to retrieve the current escalator speed from the PLC, and to publish as a LinkSmart

event.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

35

6. GRAPHICAL USER INTERFACE

All SEAM4US users (i.e., the project engineer and the station operator, as defined in D4.1) can

interact with the system via a Graphical User Interface (GUI) which has been developed in

.Net, C#, HTML5, CSS3 and several JavaScript libraries within the Microsoft Visual Studio IDE.

Due to privacy and data sensitivity issues, the GUI runs on the SEAM4US server, which is

accessible only from the TMB computer network, at the address http://localhost/Signin.aspx.

In order to protect sensitive data and prevent accidental changes of the system, access to the

GUI requires user identification (see Figure 24).

Figure 24. User identification screen to access the GUI: each SEAM4US role has different credentials

Each SEAM4US user has different credentials, which allow the user to access only the tabs

s/he is allowed to see.

The SEAM4US architecture shown in Figure 1 gets its data from the data storage component

and from the control component. The communication with the former is one directional since

the GUI displays data but the user cannot manipulate them; in contrast, the communication

with the former (which occurs via web services) is bidirectional since the user can interact

with such component via the GUI. Also, the GUI communicates the representation component

and with the supervisor; the status of the GUI can be checked by accessing the address

localhost:55183/GUISupervisor.aspx, as shown in Figure 25.

Figure 25. Example of check on the GUI functionality

The GUI has three tabs: the 'Station map' tab (see Sec. 6.1) and the 'Monitoring data' tab (see

Sec. 6.2) refer to data retrieved from the data storage; the 'Control' tab (see Sec. 6.3) refers

to status of the controller.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

36

6.1. Station map tab

The 'Station map tab' retrieves the sensors location and the recorded measurements from the

data storage and shows them on a map of the station (see Figure 26). This tab is shown only

in the project engineer GUI, as it contains detailed information about the status of the

system.

Figure 26. 'Station map' tab showing the position and values of all sensors

The environmental sensors (e.g., temperature, pressure, CO2) are visualized as circles and

they are color coded according to the legend on the left-bottom corner of Figure 26; the

consumption sensors (e.g., escalator, lightning) are visualized as squares and they are icon

coded according to the legend on the right-top corner of Figure 26. The legend is interactive:

clicking on a legend item toggles the visualization of all monitoring sensors of that kind from

the station map. For instance, in Figure 27 only four kinds of sensors are visible: temperature

and speed anemometer, as environmental monitoring, and air conditioning and escalator, as

consumption monitoring.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

37

Figure 27:. 'Station map' tab showing the position and values of selected sensors

In the station map, the user can visualize on the tooltip the latest value and timestamp of

each sensor by hovering on it with the mouse. Also, the user can access the historic values of

each sensor by selecting it, which will prompt a pop up window showing the values of the last

month in a chart (see Figure 28). Different months and years can be selected by using the

dropdown list.

Figure 28. Historical values of a selected sensor

The chart can be zoomed in by selecting a time span and it can be reset to the original format

by clicking on the 'reset zoom' button, which appears automatically. Also, it is possible to

download or print the chart by clicking on the icon in the upper-right corner (see Figure 29).

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

38

Figure 29. The chart of the historical values can also be printed or downloaded in multiple formats

The chart for the consumption monitoring has an additional function, since it is possible

select a specific circuit from a dropdown list in the upper-left corner (see Figure 30).

Figure 30. Example of historical values for a consumption sensor

6.2. Monitoring data tab

Monitoring data can also be visualized in a tabular way within the 'Data' tab, which contains

two options: 'select one sensor” and 'select multiple sensors'. In the first case, the user can

visualize a table containing the values of a single property of one sensor for a specific month,

and download it either as an XLS or as a CSV file (see Figure 31).

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

39

Figure 31. Values of one sensor in the 'monitoring data' tab

In the second case, all properties of multiple sensors for a specific month can be selected at

once (see Figure 32) though, for obvious reasons, this large amount of data cannot be

previewed but only downloaded as a CSV file. The list where the user can select sensors from

has built-in functions such as a filter among sensor names and a toggle to select/deselect all

sensors.

Figure 32. Values of multiple sensors in the 'monitoring data' tab

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

40

6.3. Control tab

The 'Control' tab is shown both in the both engineer and station operator GUIs, and it opens a

page that is divided into two vertical parts (see Figure 33): the 'control mode' and the

'subsystem status'. They are both divided into three horizontal parts, one for each actuator.

The 'control mode' shows the general status of the SEAM4US control, which can be ON or OFF

(there are fail safe modes for the lights and for the fans, which is further documented in

D3.2.2). Additionally, the GUI displays the dimming levels for the lighting subsystem, the fan

speed for ventilation subsystem, and the escalator speed for the escalator subsystem. If any

of the subsystem has a 'warning' or a 'failure', then a label appears as well. Also, if a

subsystem fails, the corresponding control mode radio buttons are disabled to prevent errors.

The 'subsystem status' consists of a traffic light (where green, yellow and red correspond to

OK, WARN and FAIL, respectively) and a box, where further information about the subsystem

status may be provided. The meaning of this terminology will be better explained in Sec. 7.

Hovering on the traffic lights, radio buttons and values will show the timestamp of when the

value (event) was generated. For instance, in Figure 33, the SEAM4US fan control has been

stopped because no relevant environmental sensor values have been received in the last 24

hours.

Figure 33. Example of the SEAM4US GUI 'control' tab

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

41

7. SUPERVISION

The SEAM4US architecture includes a supervision component − called 'system supervisor' or

simply 'supervisor' − that notifies the user about the status of every component and, in case

of errors, provides details about the issue by emailing a list of subscribers. Therefore, the

purpose of the supervisor is twofold: it serves as a maintenance tool during the operational

phase and as a bug tracker during the development phase.

7.1. Architecture

The architecture of the supervisor is shown in Figure 34.

Figure 34. Architecture of the SEAM4US system supervisor component

The supervisor is a Java application running on the SEAM4US Server, and it has been exported

to a runnable .jar so that the cronjob can easily execute it by java –jar

/home/admini/Supervisor.jar. It expects the parameters summary and alerts for the

two different running modes, which are described in Sec. 7.3. For debugging purposes, it is

possible to provide further parameters that allow he execution of a cycle without generating

a mail (parameter nomail) or with adding the prefix [Test] to the mail subject (parameter

test). Furthermore, the use of a proxy to connect to the mail server can be disabled

(parameter noproxy), so that the same code can be run on the SEAM4US Server or on the

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

42

developer machines. In general, the supervision call should not only be used to report

malfunctions but to automate corrective action as well.

The mailer subcomponent is a PHP script running on an external web server, and it is

necessary because it is not possible to send mails from within the restricted TMB network. It

can be reached by an HTTP call under

https://forge.fit.fraunhofer.de/seam4us/mailer.php and it is secured by

user+password authentication to avoid misuse. The mailer expects the subject and mail body

as parameters for creating the mail.

7.2. The Supervisable interface

Every supervised component must implement an interface, called supervisable, consisting of

two methods: getName()and checkStatus(). The first method returns the name of the

component as a string, which will be used by the supervisor as an identifier; the second

method is called in every supervision cycle and it returns a list of Status elements, thanks to

which a component can detail the status of different subcomponents. Each Status element

consists of three fields: i) id, which indicates what subcomponent the status is about; ii)

level, which indicates whether the subcomponent is running correctly (OK), it has a problem

that does not completely disturb the execution of the component (WARN), or it has a critical

problem (FAIL); iii) description, which gives further details about the problem, if any,

or in general about the status of the subcomponent. The static data structure of the

supervisable interface described above is summarized in Figure 35.

Figure 35: Static data structure of the supervisable interface

The supervisor can request the status of a component via a servlet provided by a separate

OSGi bundle. The URL for the servlet is individualized via the component’s name, which is

returned by the getName() method. Calling the servlet triggers a call of the

checkStatus() method; the returned list of Status elements is then converted into a

JSON array. For OSGi components, the developer simply has to reference the supervisable

bundle and implement the Supervisable interface. Also non-OSGi components can be

supervised but they must provide the servlet and construct the JSON array themselves.

In general, the supervisable interface is integrated into the supervised component. However,

in some cases, supervisables are new components that supervise other components. For

example, we implemented the Windows Application Checker subcomponent that checks

whether the processes of the energy proxies (i.e., Enistic proxy, SOCOMEC proxy and SACI

proxy) and the LinkSmart Event Manager and LinkSmart Event Storage Manager run correctly

(see Figure 34). If not, the Windows Application Checker tries to restart them and returns the

success value.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

43

As an example, the following listing shows the return value of the controller supervisable

servlet that includes three status elements, one for each subcomponent (escalator controller,

light controller, and fan controller).

[{“id”:”Escalator controller status”,”level”:”OK”,”description”:””},

{“id”:”Light controller status”,”level”:”WARN”,”description”:”Light

control has been manually disabled”}, {“id”:”Fan controller

status”,”level”:”FAIL”,”description”:”Sensor feed from

topic:event/postProcessed/temperature/passeigDeGracia/line3/Cni has a

confidence below the threshold. Fan control stopped.”}]

In this case, both the escalator and the light controllers run correctly even though there is a

warning about the fact that light control was switched off manually. The fan control has been

stopped because the confidence level of one critical input value (i.e., the temperature for

the SEAM4US spatial zone Cni, see Sec. 8.1) was below the desired threshold; the status level

FAIL prompts the user to find out the cause of the problem in order to restart the fan control.

7.3. Working principles

This supervisor workflow, which is shown in Figure 36, is triggered every 10 minutes through a

cronjob, which has to be configured in /etc/crontab.

Figure 36: Workflow of a supervision cycle

First of all, the controller reads a configuration file storing the URL of each supervised

component. Modifying this configuration file allows us to disable, enable and change the

supervision of one or more components even during operation. For each component, the

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

44

supervisor requests the current status by calling the correspondent servlet; the response is

logged. Then, the supervisor checks if a status has changed to level WARN or FAIL; if so, it

creates an alert message. When all the supervised components have been processed, an email

combining new alerts is sent to a list of subscribers if there is at least one of them. Note that

the rationale behind this mechanism is to minimize the number of messages sent to the

subscribers. However, a human operator can check the supervisor’s log files at any time to

monitor the alerts issued, if needed. In order to provide a daily overview of the current

system status, a summary of all current statuses, independently of their levels, is sent once a

day. This mechanism also serves as supervision for the supervisor: if the daily summary is

missing, the human operator knows that there is a problem with the supervisor itself. The

first component to be supervised is always the controller, which usually updates also the GUI.

If the controller is not reachable, then the supervisor notifies the GUI that all control modes

fail thus ensuring that the GUI does not show unreliable data.

All emails are sent to the distribution list seam4us-supervision@fit.fraunhofer.de

(in order to be able to update the list of subscribers) and also archived. The supervisor

constructs the mail body for alerts and daily summary mails as HTML tables so that all mail

clients can present the format. Figure 37 shows an example of an alert email.

Figure 37. Example of a supervisor alert mail

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

45

8. REPRESENTATIONS

All SEAM4US components must share some knowledge regarding the representation of the

PdG-L3 station and regarding the event format, which is used to exchange data. The two

dedicated components that carry out these tasks are described in the following sections.

8.1. Spatial representation

The 'spatial representation' of the PdG-L3 provides a unique identification code of each area

of the pilot (including portions of the corridors, for instance). Of course, TMB already uses an

internal nomenclature for the spaces of the station, but it is too coarse and not

comprehensive enough to be used within SEAM4US. A map of the PdG-L3 station including all

29 SEAM4US spatial zones is shown in Figure 38.

Figure 38. SEAM4US nomenclature applied over the station model

The details of the nomenclature of the SEAM4US spatial zones have been fully documented in

D3.1.1. In short, each label is composed of three positions. In the first position, there is one

or two capital letters characterizing the function of the zone ('E' for the entrances, 'C' for the

corridors, 'H' for the halls, 'PL' for the platforms, 'SL' for the station links, and 'TL' for the

tunnels); in the second position (which exists only for the corridors, the entrances, and the

halls), there is a single capital letter characterizing the position of the part within the PdG

station ('N' for North, which means PdG-L3, and 'S' for South, which means PdG-L2 and PdG-

L4)2; in the third position, there is a progressive letter for the corridors, the suffixes 3:S1 and

2
 Since the pilot refers only to PdG-L3, the letter 'S' is never used in the nomenclature, but it has been

included in order to create an extendable nomenclature.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

46

3:S2 for the platforms and the tunnels, and a number for all other areas. The topology of the

PdG-L3 station represented as a graph where the nodes correspond to the Pd3-L3 spatial

zones is shown in Figure 39.

Figure 39. Topology of the PdG-L3 station represented with the SEAM4US spatial zones

The spatial representation has been coded in a JSON file which is then used by all

components that need it. If such representation changes (because of maintenance in some

areas or because of extensions in the pilot, for instance), it is sufficient to modify this file to

keep all components running with the updated representation.

8.2. Event representation

SEAM4US components exchange information as events published via the LinkSmart

middleware. There are two kinds of events: raw data, which are published by the monitoring

proxies components and are generated to translate the proprietary format used by all

monitoring devices and sensors into a standard SEAM4US format; postprocessed data, which

are published by the monitoring components and aggregate/filter raw data, possibly coming

from multiple sources. In addition to these two categories, there are other kinds of events,

for instance related to the database access or to the control flow. A thorough description of

all events is given in Appendix A, but in general raw data follow the format of Table 2,

whereas in the postprocessed data there is an additional row regarding the confidence level

of the data.

Similarly to the spatial representation, the event representation has been coded in a .JSON

file which is then used by all components that need it. If such representation changes

(because of maintenance in some areas or because of extensions in the pilot, for instance), it

is sufficient to modify this file to keep all components running with the updated

representation.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

47

Table 2. Template for the event format of SEAM4US raw data

Key Value type Value Comment

category string type of the sensor/device

name string name of the sensor/device

value float appropriate unit of measurement

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string location of the sensor/device

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

48

9. DATABASE AND DATABASE MANAGEMENT

As shown in Figure 40, the storage database consists of four tables: the EventItem table (see

Figure 41) stores all unmodified events, and it is then distributed into the other three tables

the Context table (see Figure 42) stores the event name and types; the ObservableProperties

table (see Figure 43) stores all event properties such as timestamp, speed, and location; the

Observation table (see Figure 44) stores one value for each ObservableProperty.

Figure 40. Structure of the SEAM4US storage DB

Figure 41. EventItem DB table

Figure 42. Context DB table

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

49

Figure 43. ObservableProperty DB table

Figure 44. Observation DB table

Figure 45 the mechanisms to store SEAM4US events in the DBs are shown. As also depicted in

the SEAM4US system architecture of Figure 1, there are currently two databases, an MSSQL

and an SQLLite DB. Note that MSSQL is the primary source of database retrieval and there are

currently no applications retrieving data from the SQLite DB, which is solely used for backup

purposes. Each DB has its own 'event storage manager', which subscribes to all events

published to the LinkSmart Event manager (see Sec. 3.3) so that they can be accessed later

on as well. The manager for the SQLite DB is called Seam4usStorage.exe (located in the

directory C:\Seam4us\Seam4UsStorage\Debug) and it is an executable file that needs to

be started by the system administrator. The manager for the MSSQL DB equivalent is called

NotifyWS and is installed in Microsoft IIS, and for this reason it does not need to be restarted

in case of a server reboot. To stop, restart or change this application, one must start

Microsoft IIS Manager and navigate to NotifyWS; once selected, it will be possible to

administer the service application.

Figure 45. Event flow through the EventManager

In addition to the different storage destination, there is another substantial difference

between the two managers: NotifyWS processes and converts key value pairs received from

the LinkSmart Event Manager into the database structure illustrated above, so that all

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

50

applications connecting to MSSQL (and especially the GUI) have an easier access to the

information stored.

Accessing the database can be done with either via Windows Authentication (used only by the

GUI) or via SQL Authentication (used by all other components). The rationale behind it is that

using Windows Authentication is in general simpler in MS applications whereas using SQL

Authentication is in general simpler in non-MS applications. The Windows Authentication

account is the same as the user on the server. For the SQL Authentication, an account called

PortalReader has been created; it can be accessed through environments such as JAVA and

even though it is currently limited to data reading, it can be easily be modified to include

data writing too.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

51

10. CONCLUSIONS

This deliverable has described in detail the different components of the final SEAM4US

system. The work done during the definition of the system architecture – which was

documented in D4.1 – and the first version of the prototype - which was documented in

D4.2.1 - served as starting points for this document. The fact that there are very minimal

discrepancies between the original architecture and its actual deployment proves that all the

phases of the project (from the definition of requirements to the specification of the

interfaces) have been successfully executed. All component descriptions have been updated

in order to reflect what is currently run in the SEAM4US servers.

The main conclusion of this deliverable is that all critical and non-critical components have

been integrated into a prototype, which is now functional and under evaluation. A particular

emphasis has been given in this deliverable to the interoperability of the components, which

have been developed synergistically even though they started from different maturity levels.

Also, the loose coupling among components makes it possible to use some subsystems

individually (as also reported in D6.1.2) to easily create spin-off 'products' of the SEAM4US

system.

It is important to emphasize that this deliverable contains thorough instructions to interact

with the system via the Graphical User Interface. Also, it includes important information

regarding the setup of the CCTV monitoring system, the LinkSmart middleware, and the

database, which are beyond the original scopes of this deliverable but have been deemed

relevant to be reported, in case the SEAM4US system will find applications besides the pilot

project.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

52

APPENDIX A - EVENT FORMAT

This appendix details the format of the events published by the 'Proxies' components

(generally called 'raw data', see Sec. A.1), those published by the 'Monitoring' components

(generally called 'postprocessed data', see Sec. A.2), and those to access the database (see

Sec. A.3).

The names of the monitoring event follow a clear convention. The names of all environmental

monitoring network events are composed of 'S' followed by a progressive number to identify

the specific sensor (e.g., “S28”). The names of the cameras of the CCTV system map the

official ones given by TMB. The names of the energy consumption network events (also called

smart meters) are composed of 'SM' followed by a progressive number to identify the specific

meter and the corresponding channel used for a certain measure separated by ':' (e.g., “SM-

4:C12” identifies the smart meter "SM-4" and channel "C12"); when different power meters

are metering the same equipment but for different ranges of power (i.e. different clamps), a

suffix High/Low is used to identify the range. The names of the fans are composed of 'SF'

followed by a progressive number to identify the specific fan (e.g., “SF1”) followed by a ":"

and the "High/Low" suffix for identifying the power range for which it provides reliable values

(for instance SF1:High, SF2:Low).

A.1 Raw data

A.1.1. Raw data for monitoring

Name: Solar radiation

Topic: event/rawData/solarRadiation/.*

Note: there may be different events for every location. The location can be specified in the

topic in the form "event/rawData/solarRadiation/passeigDeGracia/line3"

Table 3. Raw data format for the solar radiation

Key Value type Value Comment

category string “Solar radiation”

name string name of the sensor

solarRadiation float expressed in W/m^2

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

Name: Anenometers

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

53

Topic: event/rawData/airSpeed/.*

Note: there are different events for every location. The location can be specified in the

topic in the form "event/rawData/airSpeed/passeigDeGracia/line3/CNq"

Table 4. Raw data format for the anenometers

Key Value type Value Comment

category string “Low Speed Anemometer” or
“High Speed Anemometer”

the type of anemometer
identifies the range of windSpeed

name string name of the sensor

windSpeed float expressed in m/s

date string date of acquisition; format yyyy-
mm-dd

time string time of acquisition; format
hh:mm:ss

location string

Name: Differential pressure

Topic: event/rawData/pressureDrop/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/rawData/pressureDrop/passeigDeGracia/line3/CNq"

Table 5. Raw data format for the differential pressure

Key Value type Value Comment

category string “Pressure Drop”

name string name of the sensor

pressureDrop float expressed in Pa

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

Name: Absolute pressure

Topic: event/rawData/absolutePressure/.*

Note: there are different events for every location. The location can be specified in the

topic in the form "event/rawData/absolutePressure/passeigDeGracia/line3/CNq"

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

54

Table 6. Raw data format for the absolute pressure

Key Value type Value Comment

category string “Absolute pressure”

name string name of the sensor

absolutePressure float expressed in Pa

date string date of acquisition; format yyyy-
mm-dd

time string time of acquisition; format
hh:mm:ss

location string

Name: PM10 for lower concentrations (also called 'outdoor PM10')

Topic: event/rawData/OutPM10/.*

Note: there are different events for every location. The location can be specified in the

topic in the form "event/rawData/OutPM10/passeigDeGracia/line3/PL3"

Table 7. Raw data format for the PM10 (lower concentrations)

Key Value type Value Comment

category string “PM10”

name string name of the sensor

PM10 float expressed in mg/m^3

date string date of acquisition; format
yyyy-mm-dd

time string time of acquisition; format
hh:mm:ss

location String

Name: PM10 for higher concentrations (also called 'indoor PM10')

Topic: event/rawData/IndPM10/.*

Note: there are different events for every location. The location can be specified in the

topic in the form "event/rawData/IndPM10/passeigDeGracia/line3/PL3"

Table 8. Raw data format for the PM10 (higher concentrations)

Key Value
Type

Value Comment

category string “PM10”

name string name of the sensor

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

55

numOfParticles long number of particles

date string date of acquisition; format
yyyy-mm-dd

time string time of acquisition; format
hh:mm:ss

location string

Name: CO2

Topic: event/rawData/CO2/.*

Note: there are different events for every location. The location can be specified in the

topic in the form "event/rawData/CO2/passeigDeGracia/line3/PL3"

Table 9. Raw data format for the CO2

Key Value type Value Comment

category string “CO2”

name string name of the sensor

concentration float CO2 concentration in ppm

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

Name: Temperature

Topic: event/rawData/temperature/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/rawData/temperature/passeigDeGracia/line3/PL3"

Table 10. Raw data format for the temperature

Key Value type Value Comment

category string "Air Temperature" or
"Surface Temperature"

name string name of the sensor

temperature float expressed in ºC

date string date of acquisition; format yyyy-
mm-dd

time string time of acquisition; format
hh:mm:ss

location string

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

56

Name: Humidity

Topic: event/rawData/humidity/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/rawData/humidity/passeigDeGracia/line3/PL3"

Table 11. Raw data format for the humidity

Key Value
Type

Value Comment

category string “Humidity”

name string name of the sensor

relativeHumidity float expressed in %

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

Name: Power consumption

Topic: event/rawData/powerConsumption/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/rawData/powerConsumption/passeigDeGracia/line3/SM-4:C12"

Table 12. Raw data format for the power consumption

Key Value type Value Comment

category string “Power
Consumption”

name string

consumption float Apparent power expressed in VA

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

Name: CCTV cameras

Topic: event/rawData/occupancyLevel/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/rawData/occupancyLevel/passeigDeGracia/line3/PL3"

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

57

Table 13. Raw data format for the occupancy

Key Value type Value Comment

category string “Occupancy
Level”

name string name of the camera

numberOfPeople int no. of people focused by the camera

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

standardDeviation int standard deviation from the no. of
people detected

Name: Train arrivals

Topic: event/rawData/arrivedTrain/.*

Note: This event is generated by a train proxy when a train arrives in platform. Just one

event is generated for each train in order to allow post-processing to count arrived trains.

Table 14. Raw data format for the train arrivals

Key Value Type Value Comment

category string “Arrived Train”

name string not used

value float not used

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string location of platform at which the train
arrives (e.g., PL3:S1)

A.1.2. Raw data for actuators

Note that the raw data for the actuators are used to monitor the state of the devices (only

fans and escalators), also when the SEAM4US control is switched off.

Name: Escalator speed

Topic: event/rawData/escalatorSpeed/.*

Note: This event is generated by the escalator proxy when the speed of the escalator is

changed. The escalator proxy publishes events about the current speed of the escalator using

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

58

the LinkSmart EventManager whenever the speed of the escalator is changed. This event is

sent onChange every 10 minutes.

Table 15. Raw data format for the escalator speed

Key Value type Value Comment

category string “Escalator Speed”

name string

speed float {0, 0.2, 0.4, 0.5} actual speed in m/s

status boolean {true, false} true if the connection is established

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string location of the escalator

Name: Fan frequency

Topic: event/rawData/fanFrequency /.*

Note: The fan frequency event is periodically generated by the controller at each control

step. The output is implemented using the Event Manager.

Table 16. Raw data format for the fan frequency

Key Value type Value Comment

category string “Fan Frequency”

name string name of the fan

frequency float current frequency in Hz

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string location of the fan

Name: Fan control status

Topic: event/rawData/fanControlStatus/.*

Note: The Fan Control Status event is generated each time the status of the control changes

from CCIF to Seam4US or vice versa. The output is implemented using the Event Manager. If

the fan frequency variator is controlled manually by a technician on site for maintenance the

control commands are not forwarded. If the maintenance mode is deactivated, the variator

returns to the last frequency and operation mode received.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

59

Table 17. Raw data format for the fan control status

Key Value
type

Value Comment

category string “Fan Control
Status”

name string name of the fan

maintanence boolean {True, False}

frequency float current frequency in Hz

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string location of the fan

A.2 Postprocessed data

Postprocessed data are computed from raw data, and they always include a field to state the

confidence level of the data. Postprocessing actions includes filtering, estimation of indirect

measures and resampling (synchronization).

A.2.1. Postprocessed data for monitoring

Name: Air change rate

Topic: event/postProcessed/airChangeRate/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/airChangeRate/passeigDeGracia/line3"

Table 18. Postprocessed data format for the air change rate

Key Value type Value Comment

category string “Air Change Rate”

name string corresponding real sensor at which
the post-processed data refers to (if
existing)

airChangeRate float expressed in m^3/s

date string date of acquisition; format yyyy-mm-
dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

60

Name: Air flow rate

Topic: event/postProcessed/airFlowRate/.*

Note: there are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/airFlowRate/passeigDeGracia/line3/CNl"

Table 19. Postprocessed data format for the air flow rate

Key Value type Value Comment

category string “Air Flow Rate”

name string corresponding real sensor at which the
post-processed data refers to (if existing)

airFlowRate float expressed in m^3/s

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: Air speed

Topic: event/postProcessed/airSpeed/.*

Note: There are different events for every location. The location can be specified in the topic

in the form "event/postProcessed/airSpeed/passeigDeGracia/line3/CNq"

Table 20. Postprocessed data format for the air speed

Key Value type Value Comment

category string “Low Speed Anemometer” or
“High Speed Anemometer”

Type of the anemometer is
required to identify out of
range windSpeeds

name string corresponding real sensor at
which the post-processed
data refers to (if existing)

windSpeed float expressed in m/s

date string yyyy-mm-dd date of acquisition; format
yyyy-mm-dd

time string hh:mm:ss time of acquisition; format
hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: PM10

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

61

Topic: event/postProcessed/PM10/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/PM10/passeigDeGracia/line3/PL3"

Table 21. Postprocessed data format for the PM10

Key Value type Value Comment

category string “PM10”

name string corresponding real sensor at which the post-
processed data refers to (if existing)

PM10 float expressed in µg/m^3

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: CO2

Topic: event/postProcessed/CO2/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/CO2/passeigDeGracia/line3/PL3"

Table 22. Postprocessed data format for the CO2

Key Value type Value Comment

category string “CO2”

name string corresponding real sensor at which the post-
processed data refers to (if existing)

CO2 float expressed in ppm

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: Absolute pressure

Topic: event/postProcessed/absolutePressure/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/absolutePressure/passeigDeGracia/line3/CNq"

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

62

Table 23. Postprocessed data format for the absolute pressure

Key Value
type

Value Comment

category string “Absolute
Pressure”

name string corresponding real sensor at which the post-
processed data refers to (if existing)

absolutePressure float expressed in Pa

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: Temperature

Topic: event/postProcessed/temperature/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/temperature/passeigDeGracia/line3/PL3"

Table 24. Postprocessed data format for the temperature

Key Value type Value Comment

category string "Air Temperature" or
"Surface Temperature"

name string corresponding real sensor at which
the post-processed data refers to (if
existing)

temperature float expressed in ºC

date string date of acquisition; format yyyy-
mm-dd

time string time of acquisition; format
hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: Humidity

Topic: event/postProcessed/humidity/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/humidity/passeigDeGracia/line3/PL3"

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

63

Table 25. Postprocessed data format for the humidity

Key Value type Value Comment

category string "Humidity"

name string corresponding real sensor at which
the post-processed data refers to (if
existing)

relativeHumi
dity

float

date string date of acquisition; format yyyy-mm-
dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: Power consumption

Topic: event/postProcessed/powerConsumption/.*

Note: There are different events for every location. The location can be specified in the

topic in the form "event/postProcessed/powerConsumption/passeigDeGracia/line3/PL3"

Table 26. Postprocessed data format for the power consumption

Key Value type Value Comment

category string "Power consumption"

name string Name of equipment or lighting zone
at which the consumption refers to
(format).

consumption float active power expressed in W

date string date of acquisition; format yyyy-mm-
dd

time string time of acquisition; format hh:mm:ss

location string Name of equipment or lighting zone

at which the consumption refers to.

confidence float [0,1] level of confidence

Name: Passenger occupancy

Topic: event/postProcessed/occupancyLevel/.*

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

64

Table 27. Postprocessed data format for the passenger occupancy

Key Value type Value Comment

category string " Occupancy
Passenger Level "

name string It is left empty

numberOfPe
ople

float number of people in the specified
location

date string date of acquisition; format yyyy-mm-
dd

time string time of acquisition; format hh:mm:ss

location string location of occupancy level

confidence float [0,1] level of confidence of resampled data

Name: Frequency of the trains

Topic: event/postProcessed/trainFrequency/.*

Table 28. Postprocessed data format for the frequency of the trains

Key Value type Value Comment

category string "Train Frequency"

name string

frequency float number of the trains arrived in the
last 10 minutes

date string date of acquisition; format yyyy-mm-
dd

time string time of acquisition; format hh:mm:ss

location string platform at which the trains arrives
(e.g., "PL3:S1")

Name: Weather station

Topic: event/postProcessed/weatherStation/.*

Note: There may be different events for every location. The location can be specified in the

topic in the form "event/postProcessed/weatherStation/passeigDeGracia/line3"

Table 29. Postprocessed data format for the weather station

Key Value type Value Comment

category string “Weather
Station”

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

65

name string "W11” name of the weather station (there is only
one in the pilot)

temperature float expressed in ºC; it can be empty ("NaN")

pressure float expressed in Pa; it can be empty ("NaN")

relativeHumidity float expressed in %; it can be empty ("NaN")

windSpeed float expressed in m/s; it can be empty ("NaN")

windDirection float [0,360] expressed in degrees; it can be empty
("NaN")

rainAmount float expressed in mm; it can be empty ("NaN")

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

Name: Weather forecast

Topic: event/postProcessed/weatherForecast/.*

Note: Every hour there are N new events created, each for one hour in the future. So,

modules that subscribe to the event

"event/postProcessed/weatherForcast/passeigDeGracia/line3/2hourahead" will get notified

of the weather forecast for two hours from that moment on.

Table 30. Postprocessed data format for the weather forecast

Key Value
type

Value Comment

category string “Weather Forecast”

name string “http://api.wunderg
round.com”

Name of the weather station

temperature float expressed in ºC, it can be empty
("NaN")

pressure float expressed in Pa, it can be empty
("NaN")

relativeHumidity float expressed in %, it can be empty
("NaN")

windSpeed float expressed in m/s, it can be empty
("NaN")

windDirection float expressed in degrees, it can be
empty ("NaN")

windDirectionString string e.g., "north-east", it can be empty
("NaN")

skyCondition float e.g., "partly cloudly", it can be

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

66

empty ("NaN")

icon string "http://icons-
ak.wxug.com/i/c/k/
partlycloudy.gif"

date string date of acquisition; format yyyy-
mm-dd

time string time of acquisition; format
hh:mm:ss

forecastDate string format yyyy-mm-dd

forecastTime string format hh:mm:ss

location string "Barcelona (LEBL)"

confidence float level of confidence

A.2.2. Postprocessed data for control

These data are generated for updating information available at control level but are not

stored in the database.

Name: Fan frequency

Topic: event/postProcessed/fanFrequency/.*

Note: This event is generated by Controller at each control step. When the Seam4US

controller is active, the frequency value generated by the control algorithm is provided.

When the Seam4US controller is inactive and the CCIF directly control fans, this event

provides CCIF scheduled frequencies (this is always the case for the uncontrolled fans).

Table 31. Postprocessed data format for the fan frequency

Key Value type Value Comment

category string " Fan Frequency "

name string {SF1,SF2, TF1, TF2} name of the fan

frequency float expressed in Hz. If the fan is inverted
this value must be negative.

date string date of acquisition; format yyyy-mm-
dd

time string time of acquisition; format hh:mm:ss

location string location at which the fan refers to

Name: Fan control status

Topic: event/postProcessed/fanControlStatus/.*

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

67

Note: This event is generated by Controller at each control step

Table 32. Postprocessed data format for the fan control status

Key Value type Value Comment

category string " Fan Control
Status "

name string {SF1,SF2, TF1, TF2} name of the fan

status boolean {True, False} SEAM4US active (true) or not (false)

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string location at which the fan refers to

Name: Update of the passenger occupancy

Topic: event/postProcessed/occupancyLevelUpdate/.*

Table 33. Postprocessed data format for the update of the passenger occupancy

Key Value type Value Comment

category string "Train
Frequency"

name string

numberOfPe
ople

float number of people in the specified location,
updated by the 'passenger model' component
component with the latest CCTV camera
available

date string date of acquisition; format yyyy-mm-dd

time string time of acquisition; format hh:mm:ss

location string

confidence float [0,1] level of confidence

A.3. DB access events

Name: DB request

Topic: event/db/getPostProcessed/passeigDeGracia/line3/.*

Table 34. Format for the DB request

Key Value Type Value Comment

category String CSV string

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

68

location String CSV string

name String CSV string (optional)

dateStart String start date of acquisition; format yyyy-mm-dd

timeStart String start time of acquisition; format hh:mm:ss

dateEnd String end date of acquisition; format yyyy-mm-dd

timeEnd String end time of acquisition; format hh:mm:ss

Name: DB response

Topic: event/db/postProcessed/passeigDeGracia/line3/.*

Table 35. Format for the DB response

Key Value Type Value Comment

category String CSV string

location String CSV string

name String CSV string (optional)

value String(float) CSV string

date String date of acquisition; format yyyy-mm-dd

time String time of acquisition; format hh:mm:ss

confidence String(float) CSV string

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

69

APPENDIX B – METHODS

B.1 Actuators

Escalators

 public boolean setDesiredSpeed(boolean lowSpeed);

o Function: it sets the desired speed.

o Parameters: lowSpeed - If true, the desired speed is low speed (0.4 m/s). If

false, the desired speed is full speed (0.5 m/s).

o Returns: Whether the command has been successfully executed. If not

connected false is returned.

 public boolean isConnected();

o Function: it checks the connection state of the proxy.

o Returns: Whether the PLC is connected and reachable from the server.

 public boolean isSeam4UsActive();

o Function: it checks whether SEAM4US mode is activated in the switch on the

cabinet door. We do not actually know the status of this switch, so this value

is just a guess from observing the state of the PLC.

o Returns: Whether SEAM4US mode is activated. If not connected false is

returned.

 public void switchToDefaultOperation();

o Function: it switches the actuator to default operation. This will set the

"Desired speed = 0.4 m/s" output off. The setting remains until the

setDesiredSpeed() method is called.

Fans

 public double setVariatorFrequencyInHz(int id, double value,

boolean inverted)

This methods allows to set the ventilator's speed. If the proxy cannot control the fans

due to CCIF policy, maintenance or technical issues, the value is stored and set as

soon as the control is given to the SEAM4US system. Frequency in Hz (ranging from 0.0

Hz = full stop to 50.0Hz = full speed) Frequency levels between 0.0 and 10.0 Hz are

set to 0.0 Hz. Frequency levels between 10.0 Hz and 20.0 Hz are set to 20.0 Hz. If

“inverted” is set to true the direction of the fans is inverted. In addition to setting

the frequency of the variator with every call of the setVariatorFrequencyInHz method

the system is set to ready as described in the setSystemReady method.

 public boolean isSeam4UsActive(int id)

This methods returns the actual mode of control. If true is returned, the switching

logic has been set by the CCIF operator to SEAM4US and the SEAM4US system is

controlling the fans at the moment.

 public boolean isConnected(int id)

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

70

This methods returns the state of connection between the server and the installed

hardware in the ventilation room. During runtime the connection state is monitored

continuously. If the connection is established, true is returned, otherwise false is

returned.

 public boolean setSystemReady(int id, boolean ready)

This method sets the system state indicator connected to the CCIF system. If set to

false the system returns into the default CCIF mode. This means for reactivating

SEAM4US Ready, the method has to be called with the ready parameter set to true,

and then the local CCIF operator has to acknowledge the SEAM4US mode. If the PLC is

not connected or reachable, the command will be set as soon as the connection is

established. The method returns true if the value has successfully be sent to the

controller, or return false if the value could not be transmitted.

 public void switchToDefaultOperation(int id)

With this method the actuator is switched to default operation which is CCIF mode.

This will set the "SEAM4US Ready" to false for the selected fan. This setting remains

until either the setSystemReady() or the setVariatorFrequencyInHz()

method is called for this particular fan.

Lights

 public String[] getNodes();

o Function: it gets a list of all nodes.

o Returns: the addresses of all nodes, as an array of Strings.

 public String[] getZones();

o Function: it gets a list of all zones.

o Returns: the identifiers of all zones, as an array of Strings.

 public String[] getNodesInZone(String zone);

o Function: it gets a list of all nodes in a zone.

o Parameters: zone – the identifier of the zone to be queried, as a String.

o Returns: the addresses of all nodes in the zone, as an array of Strings.

 public String[] getZonesForNode(String node);

o Function: it gets a list of the zones assigned to the node.

o Parameters: node – the address of the node to be queried, as a String.

o Returns: the addresses of all zones of the node, as an array of Strings.

 public boolean getSwitchingStatus(String node);

o Function: it gets the switching status (on/off) for the given node.

o Parameters: node – the address of the node to be queried, as a String.

o Returns: true if the node is currently switched on, false otherwise

 public int getDimmingLevel(String node);

o Function: it gets the dimming level for the given node.

o Parameters: node – the address of the node to be queried, as a String.

o Returns: the current dimming level, as an int from the range [0,100]

 public void setSwitchingStatus(String node, boolean status);

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

71

o Function: it sets the switching status (on/off) for the given node.

o Parameters: node – the address of the node to be actuated, as a String; status

– whether to switch the node on (true) or off (false), as a boolean

 public void setDimmingLevel(String node, int level);

o Function: it sets the dimming level for the given node.

o Parameters: node – the address of the node to be actuated, as a String; level:

the desired dimming level, as an int from the range [0,100]

 public void setSwitchingStatusForZone(String zone, boolean

status);

o Function: it sets the switching status (on/off) for the entire zone given.

o Parameters: zone – the identifier of the zone to be actuated, as a String;

status – whether to switch the zone on (true) or off (false), as a boolean

 public void setDimmingLevelForZone(String zone, int level);

o Function: it sets the dimming level for the entire zone given.

o Parameters: zone – the identifier of the zone to be actuated, as a String;

level: the desired dimming level, as an int from the range [0,100]

 public void switchToDefaultOperation();

o Function: it switches the actuator to default operation. This will set all lights

to dimming level 100 (full brightness). The setting remains until any other

method is called to set the dimming level or switching status.

Notes: In the SEAM4US pilot, the controllable lights are located in the zones 'HN2' (PdG-L3

hall with ticket validation machines), 'CNm' (corridor/staircase between platform and hall),

'PL3_Wall' and 'PL3_Edge' (platform in southward direction, allowing to control the two lines

of lights separately). For the pilot operation, the method

setDimmingLevelForZone(),which is called by the controller, also implements a limit of

the dimming levels corresponding to the illuminance required by TMB’s company policies.

B.3 LinkSmart

Event manager

 public List<Event> GetEventData(string topic, string[] timespan)

o Function: it gets a list of all events with a specific topic and during a set time

period. Set timespan to null to get all events.

o Returns: events in same format as received, as a list of Event.

 public List<RawEvent> GetRawEventData(string topic, string[] timespan)

o Function: it gets a list of all events with a specific topic and during a set time

period. Set timespan to null to get all events.

o Returns: more structured events, as a list of RawEvent.

 public string GetChannelData(string smartMeterID, string channel, string[] timespan)

o Function: it gets all consumption observations for a single channel given a

specific timespan. Set timespan to null to get all data.

o Returns: XML representation of consumption data

 public string GetPowerLineData(string powerLine, string[] timespan)

o Function: it gets all consumption data associated with a specific power line

during a set time period. Set timespan to null to get all data.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

72

o Returns: XML representation of consumption data associated with a power

line.

D4.2.2 – FINAL SYSTEM PROTOTYPE AND USER MANUAL

73

GLOSSARY AND ABBREVIATIONS

 CCTV: Closed-Circuit Television

 CSV: Comma-Separated Values, which is a file storing tabular data in plain-text form

 DB: Database

 GUI: Graphical User Interface

 IIS: Internet Information Server

 JDK: Java Development Kit

 JRE: Java Runtime Environment

 MS: Microsoft

 NTP: Network Time Protocol

 OSGi: Open Service Gateway initiative, describes a modular system and

a service platform for the Java programming language that implements a complete

and dynamic component model

 PdG-L3: Passeig de Gracia - L3, which is the location of the pilor project

 PM10: Particulate Matter smaller than about 10 micrometers

 TMB CCIF: Spanish acronym for the TMB SCADA

 TMB SCADA: Main control center of TMB infrustructures in the pilot project

 WSN: Wireless Sensor Network

	Executive Summary
	Contents
	Figures
	Tables
	1. Introduction
	2. Final SEAM4US system architecture
	3. LinkSmart middleware
	3.1. Network manager
	3.2. Supernode
	3.3. Event manager

	4. Monitoring proxies
	4.1. Environmental monitoring network proxies
	4.1.1. Setup of the AMPASE platform in SEAM4US
	4.1.2. Environmental sensor proxies
	4.1.3. Sensor network management UI
	4.1.4. Software and protocols
	4.1.5. Time synchronization
	4.1.6. Duty cycling
	4.1.7. Routing

	4.2. CCTV proxy and CCTV-based crowd density estimator
	4.2.1. Working principles
	4.2.2. Calibration
	4.2.3. Algorithms for crowd density estimation
	4.2.4. Using the crowd density estimator

	4.3. Train arrival proxy
	4.4. Weather forecast proxy
	4.5. Enistic meters proxy
	4.6. SOCOMEC meters proxy
	4.7. SACI meters proxy

	5. Actuator proxies
	5.1. Fan proxy
	5.2. Light proxy
	5.3. Escalator proxy

	6. Graphical User Interface
	6.1. Station map tab
	6.2. Monitoring data tab
	6.3. Control tab

	7. Supervision
	7.1. Architecture
	7.2. The Supervisable interface
	7.3. Working principles

	8. Representations
	8.1. Spatial representation
	8.2. Event representation

	9. Database and Database management
	10. Conclusions
	Appendix A - Event format
	A.1 Raw data
	A.1.1. Raw data for monitoring
	A.1.2. Raw data for actuators

	A.2 Postprocessed data
	A.2.1. Postprocessed data for monitoring
	A.2.2. Postprocessed data for control

	A.3. DB access events

	Appendix B – Methods
	B.1 Actuators
	B.3 LinkSmart

	Glossary and abbreviations

