

D2.1 Reference Architecture and Energy Services v1.0
 1

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other.

**Security Class: PU: Public; PP: Restricted to other programme participants (including the Commission); RE: Restricted to
a group defined by the consortium (including the Commission); CO: Confidential, only for members of the consortium
(including the Commission).

Title: Document Version:

D2.1 Reference Architecture and Energy Services v1.0 1.0

Project Number:
Project
Acronym:

Project Title:

FP7-60061-EEB-ICT-2011.6.5 SmartKYE Smart Grid Key Neighbourhood Indicator Cockpit

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M10 (August 2013) M10 (August 2013) R-PU

Responsible: Organisation: Contributing WP:

José Javier García BDigital WP2

Authors (organization):

José Javier García (BDigital), Stamatis Karnouskos (SAP), Dejan Ilic (SAP), Wei Cheng (SAP), Rafael
Peris (ETRA I+D), Lola Alacreu (ETRA I+D), Robert Sauter (UDE), Aris Dimeas (ICCS), Eleana
Hatzoplaki (ICCS), Sergi Saldaña (TFLEX), Lucas Pons (ETRA I+D), Diego García-Casarrubios (ETRA
I+D).

Abstract:

This document presents efforts carried out towards defining the SmartKYE reference architecture.
Background information, definition process, methodology, detailed concepts and definition of services
as well as examples of the API are presented. This document is intended to be the starting point for all
development work that depends on the common architecture.

Keywords:

SOA, Energy Management, Web Services, Architecture

D2.1 Reference Architecture and Energy Services v1.0 2

Table of Contents

1 Introduction ... 7

1.1 Purpose and Scope of the Document ... 7

1.2 Energy efficient neighbourhood – State of the art review .. 7

1.2.1 Principles and vision of ICT enabled energy efficient neighbourhoods 8

1.2.2 ICT enabled platforms for energy efficient neighbourhoods 9

2 SmartKYE Architecture Definition Approach .. 15

2.1 Introduction .. 15

2.2 Architecture definition methodology - TOGAF ... 16

2.2.1 Architecture Development Method (ADM) ... 17

2.2.2 Adapting the ADM to SmartKYE project .. 21

2.3 The Open Group SOA reference Architecture .. 22

2.3.1 The Open Group SOA Reference Architecture - Overview 22

3 SmartKYE Architecture Vision ... 26

3.1 Introduction .. 26

3.1.1 Stakeholders... 26

3.1.2 Architectural requirements - Overview .. 28

3.2 Architectural drivers – Energy Management Systems (EMS) integration 29

3.2.1 Wind Power Plants ... 30

3.2.2 Public buildings ... 30

3.2.3 Public lighting system ... 30

3.2.4 Electric vehicle infrastructure .. 30

3.3 SmartKYE architecture vision ... 31

3.4 SmartKYE architectural principles .. 32

3.4.1 Business Principles... 32

3.4.2 Data principles .. 33

3.4.3 Application Principles .. 34

4 SmartKYE Reference Architecture Concept .. 35

4.1 Introduction .. 35

4.2 SmartKYE Reference Architecture – Horizontal or Functional Layers 36

4.2.1 SmartKYE Consumer Layer .. 37

4.2.2 SmartKYE Service Layer .. 38

4.3 SmartKYE Reference Architecture – Cross-cutting or Supportive Layers 39

4.3.1 SmartKYE Integration Layer ... 39

4.3.2 SmartKYE Quality of Service layer ... 40

D2.1 Reference Architecture and Energy Services v1.0 3

4.3.3 SmartKYE Information Layer .. 41

4.3.4 SmartKYE Governance layer .. 43

4.4 SmartKYE architecture conceptual view ... 43

5 SmartKYE Service Architecture ... 46

5.1 Service Architecture Overview .. 46

5.2 Service Specification .. 48

5.2.1 Entity Service .. 48

5.2.2 Group Service ... 49

5.2.3 Metric Service ... 50

5.2.4 Attribute Service ... 51

5.2.5 Complex Event Processing (CEP) Service ... 53

5.2.6 Strategy Service ... 57

5.2.7 Message Service .. 57

5.2.8 Security .. 58

6 Data Exchange Specification .. 62

6.1 Introduction .. 62

6.2 Basic Objects ... 62

6.2.1 EntityType enumeration .. 62

6.2.2 MetricType enumeration ... 62

6.2.3 AttributeType enumeration .. 62

6.2.4 Interval.. 62

6.2.5 SmartKyeException .. 63

6.2.6 EntityFilter .. 63

6.2.7 EntityError .. 63

6.3 Service-related Objects .. 64

6.3.1 Attribute .. 64

6.3.2 Entity .. 65

6.3.3 Message ... 65

6.3.4 Metric ... 66

6.3.5 Strategy .. 66

7 Conclusions ... 69

8 References and Acronyms ... 70

8.1 Acronyms ... 70

8.2 References ... 72

9 Annex ... 74

9.1 SmartKYE pilot sites EMS – PV/Wind Power EMS ... 74

9.1.1 PV/Wind Power Plant - Crete .. 74

D2.1 Reference Architecture and Energy Services v1.0 4

9.1.2 PV/Wind Power Plant - Barcelona .. 75

9.2 SmartKYE pilot sites EMS – Public buildings .. 77

9.2.1 Public buildings EMS - Crete .. 77

9.2.2 Public buildings EMS - Barcelona ... 77

9.3 SmartKYE pilot sites EMS – Public Lighting System ... 78

9.4 SmartKYE pilot sites EMS – Electric Vehicle Infrastructure 79

9.5 SmartKYE architecture building blocks and capabilities mapping 80

9.6 Exchanged Objects (XSD) .. 88

9.6.1 Basic Objects .. 88

9.6.2 Service Related Objects ... 91

9.6.3 Message ... 95

9.6.4 Strategy .. 95

9.7 Service Interfaces (WSDL) ... 97

9.7.1 Attribute .. 97

9.7.2 Entity .. 102

9.7.3 Group ... 104

9.7.4 Message ... 106

9.7.5 Metric ... 107

9.7.6 CEP .. 111

9.7.7 Strategy .. 114

D2.1 Reference Architecture and Energy Services v1.0 5

List of Figures

Figure 1 Neighbourhood planning process (Source: IREEN project). 8

Figure 2 TOGAF Content Overview (Source: The Open Group) .. 16

Figure 3 ADM phases (Source: The Open Group) ... 18

Figure 4 TOGAF ADM – SmartKYE adaptation.. 21

Figure 5 The Open Group SOA RA Logical Solution View (Source: The Open Group) 23

Figure 6 Example of SmartKYE independent system interaction view via OESP 31

Figure 7 Relationships among Requirements, Capabilities, Building Blocks, and Layers
(Source: The Open Group) .. 35

Figure 8 Typical Interactions among the Layers of the SOA RA (Source: The Open Group)
 .. 36

Figure 9 SmartKYE SOA Reference Architecture - Conceptual view 44

Figure 10 SmartKYE platform interaction example ... 45

Figure 11 SmartKYE Service Architecture ... 46

Figure 12 The Entity Service of the platform .. 49

Figure 13 Services for entity grouping .. 50

Figure 14 Metric Services for entities of the OESP .. 50

Figure 15 Service for notification of periodical metrics of entities 51

Figure 16 Services for entity attributes ... 52

Figure 17 Service for notification of attribute updates... 52

Figure 18 CEP example for computing the KPI "Difference in energy consumption" 53

Figure 19 CEP Data Model .. 56

Figure 20 CEP API .. 57

Figure 21 Services for Strategy .. 57

Figure 22 OAuth 2.0 High-Level Overview ... 59

Figure 23 OAuth 2.0 Sequence Diagram ... 60

Figure 24 Globally used object for defining an interval ... 62

Figure 25 Globally used object for entity filtering .. 63

Figure 26 Listing of entities failing to deliver services ... 64

Figure 27 Attribute service related objects ... 64

Figure 28 Entity service related objects ... 65

Figure 29 Objects related to the Metric services .. 66

Figure 30 View of Strategy Service .. 67

D2.1 Reference Architecture and Energy Services v1.0 6

List of Tables

Table 1 ICT enabled energy efficient neighbourhoods – State of the art overview 10

Table 2 TOGAF Architecture Types Supported .. 17

Table 3 D1.1 SmartKYE architectural requirements ... 28

Table 4 Consumer Layer Capabilities .. 37

Table 5 Service Layer Capabilities ... 38

Table 6 Integration Layer Capabilities .. 39

Table 7 QoS Layer Capabilities ... 40

Table 8 Information Layer Capabilities ... 42

Table 9 Governance Layer Capabilities ... 43

Table 10 Service implementation availability in OESP and EMS .. 47

Table 11 Service usage by the OESP .. 47

Table 12 Service usage by the BC and MCC .. 48

Table 13 PV/Wind power plant data available - Crete .. 74

Table 14 PV/Wind power plant data available (weather data) - Crete 75

Table 15 PV/Wind power plant data available (algorithms results) - Crete 75

Table 16 Public buildings EMS - Crete ... 77

Table 17 Public buildings EMS - Crete ... 77

Table 18 SmartKYE SOA RA – Capabilities and ABB mapping ... 81

D2.1 Reference Architecture and Energy Services v1.0 7

1 Introduction

1.1 Purpose and Scope of the Document

The purpose of this document is to present a complete view of the SmartKYE architecture
and energy services design process as well as the results obtained. In order to properly
design SmartKYE architecture, it was first required to commonly share an understanding of
the goals and scope of the architecture, as stated by the several use cases and
requirements defined in Deliverable D1.1. Secondly, it was required to present and follow
the use of well-known international standards and industry best practices that ensure a
proper coordination of the different stakeholders during the design phase but also
guarantee the quality of the resulting architecture and energy services. Hence, the purpose
of this document is to present the results of all this process as well as settle the basis for
the development work packages, which should be responsible for the SmartKYE
development based on the architecture and energy services definition presented here.

This document is intended to provide a first complete version of SmartKYE architecture and
energy services provided by the platform, detailing the standards and best practices
followed during the design phase, as well as providing a detailed view of the information
model and platform interfaces required to achieve the main goal of designing an open
energy service platform.

The SmartKYE Architecture design will be an iterative process that will allow the definition
of a first complete version of the architecture by M10 of the project (which results are
presented in this deliverable D2.1). This version of the architecture will be the starting point
for the development work packages, triggering the Energy Management Systems (EMS)
adaptations as well as the development of the Open Energy Service Platform (OESP) and
business and monitoring and control cockpits. Based on the feedback received from
development WP, a second and final version of the architecture and energy services
provided by SmartKYE platform will be completed and released in the deliverable document
D2.2 by M24.

In summary, the scope of this deliverable is detailed as follows:

 Follow and ensure fulfilment of architectural requirements specified during the first
WP of the project, where use cases and architecture requirements for the
SmartKYE platform were defined.

 Provide a vision of the state of the art related to energy efficiency at a neighbour-
hood and citywide level, identifying potential aspects of interest for SmartKYE plat-
form development.

 Provide a complete vision and reference document of the SmartKYE open energy
service platform and energy services provided.

1.2 Energy efficient neighbourhood – State of the art review

Future energy systems should be planned and operated as a holistic multi-energy system,
taking into account all forms of energy. The energy systems to be operated at the
neighbourhood or citywide level should take into consideration not only many energy
production systems (centralised and decentralised), energy storage or energy distribution
networks, but also business objectives and end-users needs and behaviour. In this sense,
information and communication technologies (ICT) enable better management of the entire
energy system at the neighbourhood level via optimisation and control algorithms, which
improve economic aspects as well environmental impact, while providing better analysis
tools for authorities and decision takers.

D2.1 Reference Architecture and Energy Services v1.0 8

Thus, sharing a common vision and architecting such systems plays a key role in the
design of future energy systems, as well as to guarantee interoperability and faster market
adoption. So that, in this section we briefly review the vision of ICT enabled energy efficient
neighbourhoods, as defined within the European project ICT4E2B [1] and IREEN [2], being
the topics of latter closer to SmartKYE project. IREEN is an EC’s 7th Framework
Programme Coordination and Support Action project which aim is to extend the notion of
energy positive buildings, districts and neighbourhoods. ICT4E2B and IREEN have already
defined challenges, aspects to consider and potential directions with respect to the energy
efficient buildings in the context of smart grid cities, many of which have already been
considered when designing this architecture.

1.2.1 Principles and vision of ICT enabled energy efficient neighbourhoods

The energy efficiency of neighbourhoods is maximised by operating and planning the entire
neighbourhood system as an optimal whole. This requires a holistic approach, including the
entire energy chain. The vision is to plan and operate neighbourhoods as energy efficiently
as possible in each local surrounding and circumstances. The key principles for achieving
energy efficient neighbourhood are:

 Efficient energy production, distribution and storage

 Increased energy efficiency via better energy managemet

 ICT solutions as an enabler for better integration/interaction of energy stakeholders

ICT solutions certainly play a key role in the integration of the myriad of heterogeneous
energy sub-systems of a neighbourhood into a holistically optimised and efficiently operated
energy system. In this sense, within IREEN project it has been proposed a common vision
for planning and management of neighbourhoods. The vision is for the wide availability of
relevant data and ICT tools to support holistic decision making in neighbourhoods, which is
in the end what is pursued with the development of SmartKYE platform.

Figure 1 Neighbourhood planning process (Source: IREEN project).

Citizens, businesses and public authorities co-create and manage the data and the
intelligent systems that enable energy efficient living. In general, neighbourhood plans are
supported by advanced information derived from live systems. When it comes to energy
efficiency planning, the process involves meeting and monitoring energy efficiency targets
within a neighbourhood as part of wider legal and regulatory frameworks. ICT systems
enable robust planning decisions based on optimising environmental and economic

D2.1 Reference Architecture and Energy Services v1.0 9

performance. Figure 1 summarizes the vision proposed.

All these principles and vision have been taken into consideration while defining the
SmartKYE architecture. Furthermore, this analysis has been extended with a thorough state
of the art review as well as the participation in workshops [3] where possible collaboration
with other European projects has been identified. Results from this analysis are presented
in the following section.

1.2.2 ICT enabled platforms for energy efficient neighbourhoods

As it can be seen from the previous section, ICT plays a key role in the integration of a
myriad of heterogeneous energy systems, enabling easy information exchange between
these systems. However, achieving this goal at a city level is challenging task. In this
context, SmartKYE as well as several other European and international projects are
defining and developing technological solutions that demonstrate the feasibility and benefits
of facilitating information exchange between different systems at a neighbourhood and
citywide level.

A neighbourhood or citywide platform that enables better business decisions to be made by
public authorities should be more than the sum of the individual subsystems (already
deployed and running in isolation across neighbourhoods and cities). In this sense, there
are several common objectives that are considered not only by SmartKYE project but also
by several other public and private initiatives detected. These objectives are summarized in
the following list:

 Open frameworks and platforms: Dynamic nature of many systems and activities
within a city imposes challenges to the way these systems are integrated in order to
provide reliable and useful information to authorities. This should require a reliable,
open and adaptable framework that could suit neighbourhood and citywide changing
conditions.

 Standardization: This is a major challenge but at the same time a enabler for the
development of open platforms that engage the most stakeholders possible. At the
same time this could guarantee longer terms solutions lifecycles, making them more
attractive to public authorities.

 Generic [4]: Any citywide platform should be capable to adapt to the continuous
shifting of responsibilities amongst all stakeholders in a city, changing operational
disciplines, functional areas, 3rd party processes, city policies, etc. In summary, the
platform should offer generic functional building blocks.

 Scalable solutions: As any other system, a city wide platform should be ready to
adapt to the increasing amount of information generated by current systems as well
as the integration of some other future systems. This is also related to requirements
such as decentralized energy management, security and reliability of the platform,
stability, performance, etc.

Several European projects are developing either solutions related to energy efficiency at a
neighbourhood level or to specific areas such as integration of renewable and distributed
energy sources or integration of electric vehicle (EV). The following table includes a list of
projects that have been considered of interest for SmartKYE project. In particular, the focus
of this analysis is to gather information about the scope of such initiatives as well as related
topics and potential areas of collaboration with SmartKYE.

D2.1 Reference Architecture and Energy Services v1.0 10

Table 1 ICT enabled energy efficient neighbourhoods – State of the art overview

Project
Acronym

Project Full Name Related topics Project Scope/Objectives

Adapt4EE Occupant Aware,
Intelligent and
Adaptive

Enterprises

Take profit of the experience
and results obtained for the
development of buildings energy
management system. This could
provide valuable insights for the
integration of the buildings
components in each of the pilot
sites.

Adapt4EE aims at augmenting the contemporary architectural envelope by incorporating business and
occupancy related information thus providing a holistic approach to the design and evaluation of the
energy performance of construction products at an early stage and prior to their realization.

At the same time, Adapt4EE aims to deliver and validate a holistic energy performance framework that
incorporates architectural metadata and environmental parameters (BIM), critical business models
(BPM), treating occupants as the central reference point.

Ambassador Autonomous
Management System
Developed for Building
and District Levels

Take profit of the approach
followed for the integration of
buildings within the energy
management in districts as well
as the demonstrations
performed in three pilot sites.

The purpose of the AMBASSADOR project is to study, develop and experiment systems and tools that
will aim at optimising the energy usage in a district by managing the energy flows, predicting and
mastering energy consumption and energy production. The overall goal is to define and experiment a
system that optimises the cost of energy in a district. In order to achieve this, the project proposes the
development of real time adaptive and predictive behavioural models of buildings and districts.

BaaS Building as a Service Take profit and potentially
collaborate in areas such as the
design of a service middleware
platform to abstract the building
physical devices and support
high level services on the cloud.

It could also be relevant to follow
the approach of this project
towards the definition of energy
models for performance
estimation and control services.

The BaaS project aims to design and develop a generic ICT-enabled to optimize energy performance
in non-residential buildings in operational stage. The main objective is to provide tools that enable an
integrated assessment, prediction and optimization services that guarantee harmonious and
parsimonious use of available resources.

BEAMS Buildings Energy
Advance Management
System

Taking profit of the advantages
of the Open interoperability
gateway [5], as well as main
results and conclusions from this
project could be interesting for
SmartKYE project public
buildings integration.

BEAMS strategic goal is the development of an advanced, integrated management system which
enables energy efficiency in buildings and special infrastructures from a holistic perspective. The
project is developing an open interoperability gateway that will allow the management of diverse,
heterogeneous sources and loads, and a Facility Management Environment to support that enables
facility managers to take inform decisions with regards to energy efficiency in their facilities.

D2.1 Reference Architecture and Energy Services v1.0 11

BeyWatch Building EnergY
Watcher

Take into consideration the
developments of this project
when it comes to energy
management at a
neighbourhood level.

The main objective of this project is to provide an interactive energy monitoring, intelligent control and
power demand balancing solution at home and neighbourhood level.

ENERSIP Energy Saving
Information Platform
for Generation and
Consumption
Networks

Take profit of service-oriented
approach followed for ENERsip
platform design.

The main objective of ENERsip project is to create an adaptive, customizable and service-oriented
energy monitoring and control platform that allows end users to optimise, in near real-time, and to

save energy by remotely monitoring, controlling and coordinating power generation and consumption
in neighbourhoods with residential and commercial buildings.

ENRIMA Energy Efficiency and
Risk Management in
Public Buildings

The DSS tools proposed in this
project could be valuable for the
integration of buildings and
public facilities within SmartKYE
platform, in the same way as in
BEAMS project.

The purpose of this project is to develop a decision-support system (DSS) to enable operators to
control energy flows in energy-efficient buildings and areas of public use by integrating management
of conflicting goals such as minimising costs, improving energy efficiency, CO2 emissions reduction,
etc.

This would be achieved by providing tools to enable long-term planning aimed at increasing energy
efficiency, specifically analysis of retrofits and/or expansion of on-site energy sub-systems in order to
meet certain goals, improving energy efficiency and sub-system integration in line with EU targets.

FINSENY Future Internet for
Smart Energy

Take profit of potential
architectures, standards or
simply best practices in the
scenarios of interest for
SmartKYE.

In the FINSENY project, key actors from the ICT and energy sectors will team-up to identify the ICT
requirements of Smart Energy Systems. This will lead to the definition of new solutions and standards,
verified in a large scale pan-European Smart Energy trial. Project results will contribute to the
emergence of a sustainable Smart Energy infrastructure, based on new products and services, to the
benefit of all European citizens and the environment.

GeM Green eMotion -
Development of a
European Framework
for Electromobility

Take profit of the open service-
oriented platform and
marketplace design. Although
similar in concept to SmartKYE
platform, Green Emotion is
intended mainly EV services
across Europe

One of the main goals of Green eMotion (GeM) is the definition and demonstration of the European
Electric Vehicle Marketplace. That means the ICT needed for electric mobility processes and services
required for an European wide EV services platform.

By the open architecture, standardized interfaces and business objects (e.g., identification of charging
points and contracts) it is ensured that all market participants can develop and commercialize their
own services on the Marketplace.

Hesmos ICT Platform for
Holistic Energy
Efficiency Simulation
and Lifecycle
Management Of
Public Use FacilitieS

Take into consideration the
building models and concepts
defined, particularly putting
especial emphasis in the
concepts proposed regarding
the integration of buildings and
their surrounding spaces,

The main objective of Hesmos is to provide advanced simulation capabilities to decision makers in the
whole life-cycle of buildings, taking into account energy savings, investment and life-cycle costs, by
integrating a Virtual Laboratory to connect CAD and eeTools (energy efficiency Tools) in order to
enhance building industry actor's ee-competences.

In addition, the project will provide tolls that could allow closing the gap between Building Information
Modelling (BIM) and Building Automation Systems (BAS) so that decisions can be made
economically (energy & cost related) in all life-cycle phases, and even integrating surrounding areas
extending current BIM to eeBIM

D2.1 Reference Architecture and Energy Services v1.0 12

ICT4E2B European
stakeholders’ forum
crossing value and
innovation chains to
explore needs,
challenges and
opportunities in further
research and
integration of ICT
systems for Energy
Efficiency in Buildings

ICT4E2B [1] provides
considerations, trends and
roadblocks when dealing with
energy efficiency in buildings,
which is taken into consideration
for the SmartKYE architecture.

ICT 4 E2B Forum is aimed at bringing together all relevant stakeholders involved in ICT systems and
solutions for Energy Efficiency in Buildings, at identifying and reviewing the needs in terms of

research and systems integration as well as at accelerating implementation and take-up.

ICT4E2B intends to promote, through community building activities, a better understanding, a closer
dialogue and a more active cooperation between researchers, end-users/practitioners, building
owners, technology-suppliers, and software developers as regards the use of ICT to support informed
decision-making.

The ICT4E2B Forum project aims at the following objectives:

- Bring together relevant stakeholders to identify and review the needs in terms of research
and systems integration

- Update the REEB research roadmap
- Promote the use and further development of ICT for improved energy efficiency of buildings

IntUBE Intelligent Use of
Buildings‘ Energy
Information

Take into consideration the
developments of this project
when integrating buildings
energy management into the
SmartKYE platform.

The business models and ICT tools developed in IntUBE will enable the multi-phase, multi-role
management of buildings’ energy information. In the IntUBE concept, the Energy Information Service
Provider (EISP) will use different kind of information to provide customers with the required knowledge
for making energy-efficient decisions related to the buildings they use, own or operate.

IREEN IREEN – ICT for
Energy Efficient
Neighbourhoods

Participation in workshops to
present project results as well as
being aligned with the vision and
guidelines derived from the
discussions within the project.

IREEN is an EC’s 7th Framework Programme Coordination and Support Action project which aims at
engaging European and other international experts and stakeholders in discussions and workshops to
gather their input in order to define a common strategy for ICT based solutions for energy
efficient in Europe. The main objectives of the project will focus on the following aspects:

- Building of a knowledge community adding value to existing ones (REEB, ICT4E2B Forum,
etc.) for ICT-enabled energy-positive extensive areas.

- Lead a community of experts towards identifying and updating barriers and challenges
towards ICT solutions for energy efficient

- Review and analysis of strategic innovation agendas as developed in previous or on-going
EC coordination actions (REEB, Smart Grids, REViSITE, etc.), and relevant EU initiatives.

- Development of an “Innovation roadmap”.

D2.1 Reference Architecture and Energy Services v1.0 13

NOBEL Neighbourhood
Oriented Brokerage
ELectricity and
monitoring system

Take profit of the results
obtained in this project with
regards to the development and
validation of energy monitoring
and control systems at a
neighbourhood level as well as a
platform to ease information flow
among different stakeholders
[6] [7].

Within the NOBEL project it was proposed and developed an energy brokerage system [8] [9] that
enables individual energy consumers to communicate their energy needs directly with both large-scale
and small-scale energy producers, thereby making energy use more efficient. The main scientific and
technical objectives of this project were:

- Dynamically obtain and process information from current available installed equipment.
- Development of a service oriented framework [10] that will allow easy flow of information

among the prosumers and the enterprise systems
- Development of cooperation approaches [11] for all entities involved. This assumes

cooperating objects at device level, at the energy brokerage system, at service level etc.
- Development of a Neighbourhood Oriented Energy Monitoring and Control System, Energy

brokering, and experimental energy efficient processes e.g., with the public lighting system.

PEBBLE Positive-Energy
Buildings through
Better control
decisions

Take profit of the results
obtained for energy
management of the buildings in
each of the pilots of this project.

PEBBLE covers the aspects of building description, sensor and actuator device deployment in the
building, sensor data, information flow between the Building Optimization and Control system and the
deployed components, as well as the interactions with the users, mainly the occupants of the building.

REViSITE Roadmap Enabling
Vision and Strategy
for ICT-enabled
Energy Efficiency

Being up to date with results and
recommendations derived from
the project.

The main goal of REViSITE is to identify cross-sectorial research priorities covering the domains of
grids, manufacturing, buildings and lighting, for Europe in the area of ICT for Energy Efficiency
(ICT4EE).

SEEMPUBS Smart Energy Efficient
Middleware for Public
Spaces

Take profit of the middleware
platform to be developed for the
integrated energy management
of buildings and public spaces.

SEEMPubS specifically addresses reduction in energy usage and CO2 footprint in existing Public
buildings and Spaces without significant construction works, by an intelligent ICT-based service
monitoring and managing the energy consumption. Special attention will be paid to historical buildings
to avoid damage by extensive retrofitting.

SEMANCO Semantic Tools for
Carbon Reduction in
Urban Planning

Take profit of the ontologies and
data models generated within
this project, as well as strategies
and methods for CO2 reduction
that could be applied within
SmartKYE context.

SEMANCO’s purpose is to provide a semantic tool that enable different stakeholders in an urban
environment to make informed decisions about how to reduce CO2 emissions in cities. In order to
achieve these goals, the project will focus on:

- Structuring energy related data held in distributed sources and diverse formats
- Classifying buildings for energy analysis
- Visualising urban energy consumption
- Assessing different methods of reducing CO2 emissions
- Predicting future energy demand
- Providing appropriate energy indicators for local authorities

D2.1 Reference Architecture and Energy Services v1.0 14

SmartHouse/
SmartGrid

Smart Houses
Interacting with Smart
Grids to achieve next-
generation energy
efficiency and
sustainability

The SmartHouse / SmartGrid
project validated and tested how
ICT-enabled collaborative
technical-commercial
aggregations of Smart Houses
provide an essential step to
achieve the needed radically
higher levels of energy efficiency
in Europe.

SmartHouse/SmartGrid developed a holistic concept [12] [13] for Smart Houses situated and
intelligently managed within their broader environment. Intelligent networked ICT technology for
collaborative technical-commercial aggregations enables Smart Houses to communicate, interact and
negotiate with both customers and energy devices in the local energy grid so as to achieve maximum
overall energy efficiency as a whole.

URBGrade Decision Support Tool
for Retrofitting a
District, Towards the
District as a Service

It will be interesting to follow and
find potential collaboration
opportunities with this project
due to both project share a
common pilot site (Barcelona),
and the “District as a Service”
concept would be a concept for
which SmartKYE platform would
contribute.

The URBGrade project designs, develops and validates a Platform for Decision Support that will allow
the city authorities and utilities to promote and choose the correct actions to upgrade a district to
become more energy efficient, cost effective and to increase comfort for its citizens in a District as a
Service Platform approach. The main objective of the project will focus on exploring the concept of
“District as a Service”, and design, development and validation a platform based on needs and
experience extracted from real end users.

D2.1 Reference Architecture and Energy Services v1.0
 15

2 SmartKYE Architecture Definition Approach

In order to provide a detailed service oriented architecture that enables the SmartKYE
vision, as well as ensure the alignment with other European initiatives and industry
standards, a careful review of the state of the art was performed, and briefly summarized in
section one of this document. Based on this analysis, it was selected a well-known
international industry standard as a guideline for the SmastKYE architecture definition.

In particular, it was selected “The Open Group Architecture Framework (TOGAF) version
9.1” [14] and in particular its Architecture Development Framework (ADM) and reference
architecture “Open Group Standard SOA Reference Architecture (RA)” [15].

Considering as starting point the standard and reference architecture previously mentioned,
it was defined a methodology adapted to SmartKYE project particular characteristics and
needs. This section presents a brief overview of the main concepts related to the TOGAF
framework and SOA RA of relevance for SmartKYE architecture definition.

2.1 Introduction

Nowadays, information is everywhere, but getting access to the right information at the right
time can be very difficult and costly. In addition, the cost and complexity of IT systems have
increased over time, as the demand for more sophisticated and complex solutions has
increased as well. These problems are faced across many different fields, including energy
management.

Furthermore, as proprietary solutions provide less differentiation and the growth and
adoption of open standard-based solutions increases, it is necessary to adopt these
standards and follow best industry practices when developing new solutions. While defining
SmartKYE architecture, it has been important to consider all these aspects, as well as
functional and non-functional requirements defined by project stakeholders in the first work
package of the project. In this sense it has been possible on one hand to capture business
goals defined by different stakeholders and potential SmartKYE platform users (namely
public authorities), and on the other hand to translate these needs to proper building blocks
of an open platform.

The main objective has been to leverage knowledge and best practices from well-known
standards in order to design an open, scalable, flexible and secure platform that provides
public authorities with the right tools to efficiently manage all energy aspects of their
corresponding neighbourhoods or cities.

However, industry standards such as TOGAF can be quite abstract and generic, mainly in
order to provide a common framework on which many different organizations can relish in
order to define solutions targeting specific needs. This could be a major drawback for
adopting such standard, although with proper adaptation to particular project needs, this
standard provides the right tools to manage the whole lifecycle of an enterprise architecture
definition. In addition, defining any kind of system architecture is a challenging task, not
only for the architects but also for the overall stakeholders involved.

Although TOGAF could be used to define many different kinds of system architectures, the
main focus within SmartKYE project will be the definition of a service-oriented architecture,
even more leveraging the architecture definition on well-known reference architectures such
as “the Open Group SOA RA”. This reference architecture provided a blueprint on which
SmartKYE systems architects based the definition of the SOA architecture targeting
particular project needs. Following sections review the methodology followed as well as the
general concepts regarding the SOA RA used during SmartKYE architecture definition.

D2.1 Reference Architecture and Energy Services v1.0 16

2.2 Architecture definition methodology - TOGAF

TOGAF is a detailed method and a set of supporting tools for developing enterprise
architectures. In general, TOGAF allows following good practices that have evolved in the
work of enterprise and IT architects over many years, and in particular it will help architects
to decide where and how to use SOA concepts.

TOGAF reflects the structure and content of an architecture capability within an enterprise,
as shown in Figure 2. Central to TOGAF is the Architecture Development Method (ADM),
which is going to be analysed in more detail in following sections of this document. The
ADM breaks the complex process of architecture development into a number of simpler
steps, or phases, in which the architect considers different aspects of the overall problem.

Figure 2 TOGAF Content Overview (Source: The Open Group)

TOGAF covers the development of four related types of architecture. These four types of
architecture are commonly accepted as subsets of an overall enterprise architecture, all of
which TOGAF is designed to support. They are shown in Table 2 [16].

D2.1 Reference Architecture and Energy Services v1.0 17

Table 2 TOGAF Architecture Types Supported

As it can be seen, the ADM is the major component of TOGAF and provides guidance for
architects on a number of levels [16] as indicated in the following list:

 It provides a number of architecture development phases (Business Architecture,
Information Systems Architectures, Technology Architecture) in a cycle, as an
overall process template for architecture development activity.

 It provides a narrative of each architecture phase, describing the phase in terms of
objectives, approach, inputs, steps, and outputs. The inputs and outputs sections
provide a definition of the architecture content structure and deliverables (a detailed
description of the phase inputs and phase outputs is given in the Architecture
Content Framework).

 It provides cross-phase summaries that cover requirements management.

2.2.1 Architecture Development Method (ADM)

The architecture Development Method (ADM) is a step-by-step approach to developing an
enterprise architecture. ADM describes how to derive an organization-specific enterprise
architecture that addresses business requirements. In order to achieve these goals,
architects must take into account the following key points about the ADM:

 The ADM is iterative, over the whole process, between phases, and within phases.
For each iteration of the ADM, a fresh decision must be taken as to:

 The breadth of coverage of the enterprise to be defined
 The level of detail to be defined
 The extent of the time period aimed at, including the number and extent of

any inter mediate time periods
 The architectural assets to be leveraged

 These decisions should be based on a practical assessment of resource and
competence availability, and the value that can realistically be expected to accrue
to the enterprise from the chosen scope of the architecture work.

 The ADM should be a generic method in order to to be used by enterprises in a
wide variety of different geographies and applied in different vertical
sectors/industry types. As such, it may be, but does not necessarily have to be,
tailored to specific needs. .

As previously mentioned, the TOGAF Architecture Development Method (ADM) breaks the
complex process of architecture development into a number of simpler steps, or phases, in
which the architect considers different aspects of the overall problem. These phases are
listed below and shown in Figure 3:

Architecture Type Description

Business Architecture The business strategy, governance, organization, and key business
processes.

Data Architecture The structure of an organization's logical and physical data assets and
data management resources.

Application Architecture A blueprint for the individual applications to be deployed, their
interactions, and their relationships to the core business processes of
the organization.

Technology Architecture The logical software and hardware capabilities that are required to
support the deployment of business, data, and application services.
This includes IT infrastructure, middleware, networks, communications,
processing, and standards.

D2.1 Reference Architecture and Energy Services v1.0 18

 Preliminary Phase

 Phase A: The Architecture Vision

 Phase B: The Business Architecture

 Phase C: The Information Systems Architectures (Applications and Data)

 Phase D: The Technology Architecture

 Phase E: Opportunities and Solutions

 Phase F: Migration Planning

 Phase G: Implementation Governance

 Phase H: Architecture Change Management

Figure 3 ADM phases (Source: The Open Group)

TOGAF provides for incremental architecture development. Each cycle through Phases A
to H creates an increment to the enterprise architecture. The cycles might overlap, being
Phases A to F of each new cycle being carried out in parallel with Phase G: Implementation
Governance (of the previous cycle). Depending on the scope of the architecture to be
developed, architects could focus more on some specific phases while leaving others for
subsequent cycles of the architecture design.

Following, we provide a brief description of each phase of the ADM putting special
emphasis in those phases and aspects that the architect should consider in particular when
looking to apply the principle of service-orientation [17]. In addition, it will be indicated
where applicable, those phases in which the SmartKYE architecture definition work focused
on.

D2.1 Reference Architecture and Energy Services v1.0 19

2.2.1.1 Preliminary phase

The TOGAF Preliminary Phase is about defining ―where, what, why, who, and how an
enterprise architecture is developed. It does the preparation and establishes the
architecture framework needed for new enterprise architecture work. Within the scope of
SOA architectures, the Preliminary Phase is where the architects adopt the principle of
service-orientation. Within the scope of SmartKYE, this phase already started during the
first work package of the project, where a common vision across the different project
partners was achieved, defining specific roles and responsibilities within the project as well
as use-cases and requirements, including architectural requirements.

2.2.1.2 Phase A – Architecture vision

This phase is concerned with establishing the architecture project and obtaining approval to
proceed. This phase captures the scope of the architectural initiative, which depends on the
nature of the enterprise and the level of detail of implementation specification. It creates a
compelling vision of what the organization will have at end-of-job, and finally it identifies the
key stakeholders, concerns, and business requirements.

Although this is particularly relevant in big organization or enterprise environments, within
the scope of SmartKYE project it was also relevant to consider some aspects proposed for
this phase. As in the previous phase, the specific tasks already specified for this phase
were already started during the first work package of the project. However, within the scope
of WP2, a thorough review of the results from WP1 was performed, extending those results
by performing several workshops as well as consortium teleconferences that led to a
common understanding and agreement among all project partners and stakeholders. The
main results of this phase will be further explained along the remaining of this document.

2.2.1.3 Phase B – Business Architecture

The Business Architecture aligns the enterprise's business processes, people, operations,
and projects with its overall strategy, providing a foundation on which to build the
Information Systems Architectures and the Technology Architecture. This is the first of the
three TOGAF phases that produce detailed architecture descriptions that will be the
basis for the first SmartKYE architecture release, defined and presented along this
document.

The different activities performed by all project partners were oriented to further define and
narrow not only the scope of the project, but also the scope of the architecture. This helped
to define specific business functionalities or capabilities of SmartKYE platform, and in
particular of each of its components. The results of this phase were the starting point for the
work and results in phases C and D of the ADM.

2.2.1.4 Phase C – Information Systems Architecture

According to the TOGAF ADM, the objectives of Phase C are to define the major types and
sources of data necessary to support the business, and to define the major kinds of
application system necessary to process the data and support the business. This was a
major endeavour within the project since one of the strategic goals of SmartKYE is the
design, development and validation of an open energy services platform.

Furthermore, this phase was developed within the scope of SmartKYE project taking into
consideration SOA principles, since in the end SmartKYE architecture will be based in a set
of loosely-coupled services which as a whole will become the open energy services

D2.1 Reference Architecture and Energy Services v1.0 20

platform envisioned.

2.2.1.5 Phase D – Technology Architecture

This phase seeks to map application components defined in the Applications Architecture
phase into a set of technology components, which represent software and hardware
components, available from the market or configured within the organization into technology
platforms. For SOA, this means defining the software and hardware infrastructure needed
to support the portfolio of services.

Phase D is the last of the three TOGAF phases (Phase B, C, & D) that produce detailed
architecture descriptions required to complete the first release of the SmartKYE
architecture. The starting point for the models that the architect develops in this phase is
the set of key business requirements identified in Phase A plus the detailed and elaborated
business requirements identified in Phase B and the information systems requirements
identified in Phase C.

Although some relevant aspects of this phase have been discussed within the project
consortium, the main results for this phase will be produced in work package WP3 of
SmartKYE project, where the open energy services platform will be further refine and
implemented.

The remaining phases within the TOGAF ADM will be briefly reviewed along the following
section. However, no major efforts were dedicated to them within the scope of SmartKYE
project.

2.2.1.6 Phase E – Opportunities and solutions

This phase identifies delivery vehicles (projects, programs, or portfolios) that effectively
deliver the Target Architecture defined in previous phases. It reviews the target business
objectives and capabilities, consolidates the gaps from Phases B to D, and organizes
groups of building blocks to address these capabilities. It then generates an outline
Implementation and Migration Strategy.

The identification of service and solution portfolios is a key task for SOA. The questions of
what service and solution portfolios the enterprise will have, and how they will be managed,
should be considered in this phase. A delivery option that should be considered particularly
for SOA is the use of services provided by external companies, as opposed to the
development of services in-house or the acquisition of software products that perform the
services.

2.2.1.7 Phase F – Migration planning

This phase results in a detailed plan, produced in cooperation with departments responsible
for concerned enterprise activities (such as the PMO, Operations, Sales and Production,
Delivery, etc.), for the implementation of the architecture.

The implementation governance model is reviewed in Phase F in order to ensure that it is in
place before the next phase – Implementation Governance – commences. SOA requires
particular governance rules and procedures. The governance and support strategy is
reviewed in the Preliminary Phase. If it needs to be updated for SOA, then this should be
done before implementation starts. The architect should check in Phase F that the
governance model fits for SOA, and ensure that it has been updated if necessary before
proceeding to Phase G.

D2.1 Reference Architecture and Energy Services v1.0 21

2.2.1.8 Phase G – Implementation governance

This phase involves participation of architects in implementation governance, to improve
the quality of the implementations generally and in particular to ensure conformance with
the architecture.

The activities performed in the Implementation Governance phase will depend in part on
the decisions taken on the level of detail of implementation specification when the architect
team scoped the architecture development in Phase A.

Although within SmartKYE some governance aspects were analysed, particularly from a
technical perspective, no major efforts were devoted to this phase the development of WP2.
In any case, the scope of this phase is of particular relevance when deploying the system
commercially. In this sense, some of the issues related to this phase will be analysed during
a whole work package related to exploitation plans of the project.

2.2.1.9 Phase H – Architecture Change Management

This phase is concerned with reviewing and updating the architecture and the architecture
process itself. This includes assessing the performance of the architecture and making
recommendations for change. SmartKYE project already adopted this approach when
proposing two releases of the architecture, the first one presented in this document, and the
second one at the end of the project, when particular feedback and insights gathered from
the deployment and test phases will be taken into account to further refine the SmartKYE
architecture.

2.2.2 Adapting the ADM to SmartKYE project

The TOGAF ADM is a generic method that defines a recommended sequence for the
various phases and steps involved in developing an architecture. Although the ADM has
been designed to deal with most systems and organization requirements, the scope has to
be determined in each particular case by the architects or stakeholders involved in the
architecture definition process.

Figure 4 TOGAF ADM – SmartKYE adaptation

In addition, the iterative and flexible nature of the ADM allows architects to define the depth
and breadth of the results obtained in each iteration of the process, as well as to tailor the
ADM process itself to the particular circumstances and needs of an enterprise or project. As
a result, a SmartKYE-specific ADM was proposed and used within the scope of WP2

D2.1 Reference Architecture and Energy Services v1.0 22

activities. The process is illustrated in the following Figure:

As it is illustrated in Figure 4, the TOGAF ADM has been adapted, on the one hand to align
some phases to the current project work packages, and on the other hand to focus project
resources to those particular phases that would finally enable the definition and release of a
first complete version of SmartKYE architecture, namely phases B, C and D.

Preliminary and Phase A of the ADM were developed in WP2 in parallel with activities in
WP1 of the project. Once all project stakeholders were aligned, there were clearly defined
the scope of the project as well as the scope of SmartKYE architecture. This was the basis
for the SmartKYE architecture definition activities carried out within WP2 following the
guidelines of TOGAF ADM Phases B, C and D.

The activities performed within Phases B, C and D follow also an iterative approach. In
general, once a common agreement and concrete results were produced for a particular
phase, project partners moved to the next phase, where additional aspects of the
architecture were further defined. In some particular cases, some results from previous
phases were further reviewed in order to provide an incremental update of the architecture.

As a result of the whole process, a first release of the SmartKYE architecture has been
defined and presented in this document.

2.3 The Open Group SOA reference Architecture

TOGAF ADM provides the guidelines required to effectively define enterprise architectures,
but in any case it is an architecture reference in itself. In order to assist architects in this
task, a myriad of overlapping technical products and standard can be found, most of them
developed by international organizations such as OASIS, OMG, and The Open Group.

In terms of SOA specifications, the “Navigating the SOA Open Standards Landscape
Around Architecture” joint White Paper from OASIS, OMG, and The Open Group [18],
provides an indeed analysis of the current SOA landscape scenario. This document
explains and positions standards for SOA reference models, ontologies, reference
architectures, maturity models, modelling languages, and standards work. The SmartKYE
SOA RA selection was based on this analysis.

Within this context, The Open Group SOA Reference Architecture was selected due to it
provides a layered architecture from a consumer and provider perspective with cross-
cutting concerns describing those Architecture Building Blocks (ABBs) and principles that
support the realizations of SOA. In addition, the combination of this SOA RA together with
the TOGAF ADM provided the best tools set to enable a feasible SmartKYE architecture
definition.

In summary, the Open Group SOA Reference Architecture Technical Standard provides
some guidelines and options for making architectural, design, and implementation decisions
in the implementation of solutions. The goal of this SOA RA is to provide a blueprint for
creating or evaluating architectures, including templates and guidelines for enterprise and
solution architects as well as software engineering roles within the software development
life-cycle. As in the case of the TOGAF ADM, the guidelines and specifications provided by
the SOA RA were closely followed within the context of SmartKYE project, although they
are adapted or extended according to particular project needs.

Before presenting the SmartKYE architecture designed based on the concepts provided by
the Open Group SOA RA, it is worth first to review the basic concepts provided in this
technical standard.

2.3.1 The Open Group SOA Reference Architecture - Overview

The TOGAF SOA reference Architecture is a metamodel that defines a number of layers,

D2.1 Reference Architecture and Energy Services v1.0 23

building blocks, architectural and design decisions, patterns, options and the separation of
concerns needed to design and evaluate an architecture. The RA is helpful for system
architects to identify, specify and implement services, components and flows of an end-to-
end solution that collectively support business processes or simply the achievement of an
architecture business goals (in the context of a service oriented architecture).

Additionally, the SOA RA also acts as a communication vehicle for organizations to provide
a high-level specification of what SOA components are and how to pick specific solutions,
and a mechanism to align technology with business requirements.

The SOA RA is composed by a collection of layers, as illustrated in the Figure 5, where the
logical solution view of the TOGAF SOA RA is shown:

Figure 5 The Open Group SOA RA Logical Solution View (Source: The Open Group)

Each layer of the SOA RA provides a set of “capabilities” that are realized by a set of ABBs.
The ABB or group of ABBs may be implemented in a target implementation platform or
product by multiple vendors. This approach allows users of the SOA RA to look for a set of
capabilities and assess or create an architecture that realizes those capabilities using a set
of logical building blocks without tying those building blocks to a specific vendor
implementation.

2.3.1.1 The Open Group SOA RA basic concepts

In order to fully take profit of all concepts and fundamentals presented by the SOA RA, it is
important to understand the following concepts extensively used across the standard:

 ABB (Architecture Building Block): A constituent of the architecture model that
describes a single logical aspect of the overall model. Each layer can be thought to
contain a set of ABBs that define the key responsibilities of that layer. In addition,
ABBs are connected to one another across layers and thus provide a natural
definition of the association between layers. The particular connection between
ABBs that recur consistently in order to solve certain classes of problems can be
thought of as patterns of ABBs. Each ABB resides in a layer, supports capabilities,
and has responsibilities. It contains attributes, dependencies, constraints, and
relationships with other ABBs in the same layer or different layer.

 Layer: An abstraction of a grouping of a cohesive set of ABBs, architectural
decisions, interactions among ABBs, and interactions among layers, that support a
set of related capabilities.

D2.1 Reference Architecture and Energy Services v1.0 24

 Capability: An ability that an organization, person, or system possesses to deliver a
product or service. A capability represents a requirement or category of
requirements that fulfil a strongly cohesive set of needs. This cohesive set of needs
or functionality is summarized by name given to the capability.

 Options: A collection of possible choices available in each layer that impact other
artefacts of a layer. Options are the basis for architectural decisions within and
between layers, and have concrete standards, protocols, and potentially solutions
associated with them. An example of an option would be choosing SOAP or REST-
style SOA services since they are both viable options. The selected option leads to
an architectural decision.

 Architectural Decision: A decision derived from the options. The architectural
decision is driven by architectural requirements, and involves governance rules and
standards, ABBs, KPIs, and Non-Functional Requirements (NFRs) to decide on
standards and protocols to realize an instance of a particular logical ABB.

 Interaction Pattern: An abstraction of the various relationships between ABBs. This
includes diagrams, patterns, pattern languages, and interaction protocols.

 KPI (Key Performance Indicator): A KPI may act as input to an architectural
decision.

 Enabling Technology: A technical realization or instance of ABBs in a specific
layer. Examples are web services or REST.

 Information Model: A structural model of the information associated with ABBs
including information exchange between layers and external services. The
information model includes the metadata about the information being exchanged.

 Solution Building Block: A runtime realization or instance of ABBs in a specific
layer. A candidate physical solution for an ABB; e.g., a Commercial Off-The-Shelf
(COTS) package such as a particular application server.

2.3.1.2 The Open Group SOA RA layers

As shown in Figure 5, the SOA Reference Architecture (SOA RA) has nine layers
representing nine key clusters of considerations and responsibilities that typically emerge in
the process of designing an SOA solution or defining an enterprise architecture. Each layer
proposed in the standard is designed to correspond, reinforce and facilitate the realization
of each of the various perspectives of SOA business value.

From the logical solution point of view of the SOA RA, the relevant layers for SmartKYE
architecture definition are described in the following list. Three of the layers address the
implementation and interface with a service (the Operational Systems Layer, the Service
Component Layer, and the Services Layer). Three of them support the consumption of
services (the Business Process Layer, the Consumer Layer, and the Integration Layer,
although business process layer might be optional). Finally, four of them support cross-
cutting concerns of a more supporting nature (the Information Layer, the Quality of Service
Layer, the Integration Layer, and the Governance Layer).

A brief explanation of the main aspects of this layer is provided in the following list:

 Consumer layer: This layer provides access to services. It allows consumers to
consume services either through a GUI or and API-like connection to the services.
The consumer layer is responsible for invoking a service end-point. It accesses the
services via the integration layer (or directly if integration layer is not developed in
an architecture).

 Integration layer: It is a layer of choice through which services are invoked.

 Service Component layer: This layer contains software components, each of
which provides the implementation or realization for services and their operations. It
provides the ability to support the exposure of a service in a standards-compliant

D2.1 Reference Architecture and Energy Services v1.0 25

manner (supporting interoperability) as well as exposing the service via an
integration stack from the underlying platform in which the service functionality
resides (aka within the Operational Systems Layer). Note that the protocol
(SOAP/REST/J2EE, etc.) is not prescribed but determined by the associated
architectural decision. The main capabilities this layer should support are:

o Service Realization and Implementation: This category of capabilities
supports the realization of the services.

o Service Publication and Exposure: This category of capabilities supports
service exposure and service contract publication (publish the service
contract/descriptions in a standards-compliant, interoperable manner).

o Service Deployment, invocation and binding

 Service layer: The Services Layer consists of all the services defined within the
SOA. This layer can be thought of as containing the service descriptions for
business capabilities and services together with their IT manifestation during design
time, as well as service contract and descriptions that will be used at runtime. Since
the definition of this layer is strongly related to TOGAF Phase B methodology,
following sections will focus mostly on this layer as well as exploring in more details
other layers relevant for the SmartKYE core services/components definition.

 Governance layer: It is the layer responsible for the services provisioning (among
other tasks). Service provisioning means doing all tasks required to make services
available to consumers to be able to invoke. For instance, provisioning can include
updating the services registry, which contains the service metadata that consumers
need to find, bind and invoke service. Logically, it is in this layer where services
registry and repository are located, enabling in this way to manage, monitor, and
administer the services registry and/or repository.

 Operational system layer: It provides the actual runtime for all layers of the
architecture.

While using the SOA RA as a blueprint for the SmartKYE architecture definition, it will
become clearer how the different components proposed in the standard interact among
each other, and how the proposed SOA RA is adapted or even extended to accomplish the
particular goals of SmartKYE project.

D2.1 Reference Architecture and Energy Services v1.0 26

3 SmartKYE Architecture Vision

One of the SmartKYE project strategic goals is the design, development and validation of
an open energy services platform that would empower decision makers at a neighbourhood
or city level to take actions with the goal of energy efficiency and CO2 reductions. In order
to achieve this goal, SmartKYE platform should rely on different software components
provided by different stakeholders and on valuable energy-related data coming from a
myriad of heterogeneous systems in order to finally opening up the access to this
information in a reliable and secure way.

The previous goal and its derived requirements should be reflected in a system architecture
designed to achieve integration and interoperability between the different components of
the architecture, potentially scattered across several different domains managed by
different organizations. Service-oriented Architecture (SOA) principles followed as the basis
of SmartKYE platform provide the design principles that help to address these issues.
However, prior to actually designing the architecture, this section presents the common
vision and architecture objectives agreed among the different stakeholders as well as the
principles guiding its design. Finally, several aspects influencing the SmartKYE architecture
such as stakeholders involved or systems to be integrated are presented.

3.1 Introduction

This chapter lays out the definition for important aspects driving the design and
development of SmartKYE architecture. In this sense, it is important to review the main
stakeholders involved in the SmartKYE architecture design, development and use, the main
architectural requirements identified and finally the energy production and consumption
systems that could be integrated within the platform. Due to the open nature of SmartKYE
platform, previous aspects do not pretend to be a closed list of elements influencing the
SmartKYE platform design, but some key elements driving it. The final result should be an
open platform that many different stakeholders, even those not mentioned in this document
can take profit of.

Finally, at the end of this sections are summarized the main principles driving the
SmartKYE architecture design and the high-level architecture vision and objective. All these
aspects influenced in some way or another some architectural decisions taken, so that it will
be important to keep them in mind when reviewing technical aspects of the SmartKYE
architecture in subsequent chapters of this document.

3.1.1 Stakeholders

SmartKYE platform will eliminate barriers for many stakeholders that would be able to
access the platform, either to offer valuable energy-related data, or use it in new and
innovative ways that assure an efficient use of energy resources and a reduction in CO2
emissions in a neighbourhood or a city.

A thorough stakeholder analysis was performed in work package WP1 of SmartKYE
project, an important step towards the definition on valuable use-cases and requirements
driving the design and development of the platform. As indicated in the deliverable “D1.2
Use case specification and scenario analysis”, the European Technology Platform
“SmartGrids Strategic Research Agenda 2035” document classifies the most important non-
research stakeholders involved, as shown in the list below, where it is assumed certain new
roles towards the year 2035. The future role of each stakeholder is, however, subject to
research itself.

D2.1 Reference Architecture and Energy Services v1.0 27

 Municipalities: This stakeholder is the main target user of SmartKYE platform. It
comprises the administrative persons responsible for the various technical and
business aspects of the municipality. This includes also planning, monitoring and
management activities including the operation of all the different systems within a
municipality (e.g., public buildings, public lighting, EV infrastructure, etc.). From the
point of view of SmartKYE project, this stakeholder is seen as a human operator
interacting with SmartKYE system through the two cockpits e.g., the BC as well as
the MCC. In addition, municipalities could be in charge of managing SmartKYE
platform, although this could also be done by other stakeholders.

 Energy Management Systems (EMS): These systems, deployed in the
municipality or neighbourhood, are the actors that can be monitored and controlled
by SmartKYE system. There can be many different energy systems that are already
in place in a municipality (or would be in place in the short term) e.g., public
buildings, public lighting, EV, wind farms, etc. From the point of view of SmartKYE
project, specific stakeholders related to EMS systems can be:

o Consumers or end-user: End-users of electricity e.g., public buildings,
electric vehicles and public lighting systems, and potentially consumers with
the additional role of self-provided (owned) electricity generation and/or
storage.

o Distributed Generators: Small- and medium-scale generation of mainly
renewable based electricity either for third party consumers or for own
consumption.

Finally, there are some additional stakeholders related to SmartKYE platform that could be
considered as third-party stakeholders or actors that could take profit out of SmartKYE
platform capabilities. A brief description of these stakeholders and their main objective
within the scope of SmartKYE is provided below:

 Electric Vehicle users: For those scenarios where the integration of EV (hybrid or
full electric vehicle) will be possible, an EV user will be considered as an actor that
can interact with SmartKYE system. For example, EV user might interact with
SmartKYE system in order to provide particular requirements regarding his EV
charging process management (by SmartKYE). The users will be required to
interface mobility needs with quality and security of supply needs of the electricity
system.

 Energy Retailers: Selling energy and other (related) services and products to
consumers. Retailers will develop consumer oriented programs and offerings.

 Energy Service Companies (ESCOs): Provision of a broad range of
comprehensive energy solutions, including designs and implementation of energy
savings projects, energy conservation, energy infrastructure outsourcing, power
generation and energy supply and risk management.

 Storage Providers: Delivery of storage products and services, including their
maintenance and operation thereby shifting electricity and energy consumption in
time either for third parties or own purposes.

 Ancillary Service Providers: Provision of services such as Power Balancing,
Voltage Profile Support and Blackstart

 Distribution System Operators (DSOs): Provision of services for secure, efficient
and sustainable operation of electricity distribution systems. Legal obligation of a
high quality, secure planning, operation and maintenance of the distribution grid.

 Weather information/forecast providers: This actor represents another external
system interacting with SmartKYE system in order to provide updated weather
information and/or weather forecast that can be used internally by SmartKYE to
perform energy management.

D2.1 Reference Architecture and Energy Services v1.0 28

 Data processing service providers: Provision of data processing services
respecting consumer privacy.

3.1.2 Architectural requirements - Overview

Besides analysing SmartKYE stakeholders, work package WP1 also produced a
comprehensive set of requirements for the whole SmartKYE platform components,
analysed and presented in the deliverable “D1.1 Requirements Specification”.

Architectural requirements are an important element of the whole set of requirements
provided in D1.1 document. Since these requirements have been one of the starting points
for the work performed in work package WP2, they are briefly summarized in the following
table.

It has been included an initial indication of the SmartKYE components where specific
building blocks will provide the requirement capabilities to accomplish the specific
requirements. In some cases, an architectural requirement can be accomplish through the
interaction among many different architectural building blocks.

Table 3 D1.1 SmartKYE architectural requirements

Req. ID Description

Architect
ure

Building
Blocks

Comments

ARC_001
SmartKYE reference architecture should

be based on standards for SOA refer-
ence architectures

all Covered

ARC_002
SMARTKYE reference architecture

should support data exchange with AMR
Systems

OESP
Applicable open in-

terfaces defined

ARC_003
SMARTKYE reference architecture

should support data exchange with DMS
(Distribution Management Systems)

OESP
Applicable open in-

terfaces defined

ARC_004
Support of DPWS (Devices Profile for

Web Services)
EMS

Support not needed
at system level; po-
tential integration

implications at EMS
level to be investi-

gated

ARC_005

The whole system should have the ca-
pability to receive measurements with dif-
ferent time intervals (1min, 5min, 10min,

15min, 30min, etc.)

EMS,
OESP

The platform APIs
enable the capability
to consider/adapt to

different require-
ments

ARC_006 Support of Standard Protocols all
Considered web

service interaction
among all layers

ARC_007
SMARTKYE reference architecture

should support data exchange with En-
terprise System

OESP
Open interfaces de-

fined

ARC_008
All critical systems should support re-

dundancy
OESP

Distributed system
approach with some
explicit redundancy
e.g. data owned by
EMS is also stored

D2.1 Reference Architecture and Energy Services v1.0 29

in OESP

ARC_009
All systems should handle the quality in-

dexes of tags
all

Integrated in open
interfaces

ARC_010 The architecture should be expandable all
Extensibility consid-
ered in the design

ARC_011 System Maintenance should be easy
OESP/
EMS

Considered for basic
functionalities and

integration

ARC_012 All Applications should be synchronized all
Implicitly covered by
time sync protocols

ARC_013
The system should support summer time

changes
all Implicitly covered

ARC_014
The Graphical User Interface (GUI)

should be adapted easily to future sys-
tem changes

BC,
MCC

GUIs defined in a
mash-up form, easily

adaptable

ARC_015
The System should have emergency rou-

tines
OESP,
MCC

Interactions among
the EMS/OESP are
possible via the ser-

vice APIs

ARC_016
The system SHOULD allow defining cal-

endars
MCC

Addressed in the
MCC GUI

ARC_017
The system SHOULD allow having more
than one situation detected as active at

the same time

OESP,
MCC

Integrated via group-
ing at the service

API

ARC_018
Communication of energy related infor-
mation and events at a resolution of at

least 15 mins.
all

Addressed and de-
fined in APIs

ARC_020
Quality of Information delivered by OESP

services
OESP

Addressed and de-
fined in APIs

ARC_021
Secure interactions among the

SmartKYE parts
all

All communication
will be done securely
over https. Security

service in place.

ARC_022
Sanity checks on data communicated
should be done by all systems (EMS,

OESP, MCC, BC ...)

EMS,
OESP

Semantics defined in
the service APIs with

checks at EMS/
OESP level

ARC_023

The municipality should define which
high level objectives it has in a measura-

ble form and in relation to the KPIs in
D1.2

MCC,
BC

Integrated in the
service API

3.2 Architectural drivers – Energy Management Systems (EMS) integration

Besides all those aspects already presented in this section, it was important within work
package WP2 to analyse in detail the characteristics and data provided by the EMS
systems that will be integrated in SmartKYE platform (in each pilot site within the context of
the project). This task will establish the basis for the adaptation of each EMS system,
helping in the definition of the open interfaces and information models required to achieve
the SmartKYE open energy service platform objectives.

D2.1 Reference Architecture and Energy Services v1.0 30

Within the context of SmartKYE project, two pilot sites will be available for demonstration of
the capabilities of SmartKYE platform. In each of these pilot sites different EMS systems
will be integrated. In general, the following EMS systems have been considered in
SmartKYE, although this is not a definitive list of systems supported by SmartKYE, since
the open nature of this platform would enable the integration of many other EMS systems.

 Wind power plants

 District public facilities (public buildings)

 Public lighting system (PLS)

 Electric vehicle infrastructure

In the next sections, a brief description of each of these EMS systems is provided.

3.2.1 Wind Power Plants

Wind power plants EMS will be integrated in both pilot sites in SmartKYE project (Barcelona
and Crete), although the characteristics of these systems in each case will be different. In
the annex section of this document detailed information regarding the data available for
each for these systems is provided.

3.2.2 Public buildings

Besides power production systems, several different power consumption systems will be
integrated in SmartKYE platform, mainly public buildings from both pilot sites. As it could be
expected the characteristics of both systems are different. The main data available from
these systems is summarized and presented in the annex section of this document.

3.2.3 Public lighting system

The public lighting system EMS integrated within SmartKYE will be able to provide data
about the following elements:

 Physical elements:

o Segment Controller: Equipment that physically controls lighting lines.

o Light Controller: Equipment that controls a point of light.

 Logical elements:

o Point of light

o Group of points of light: Entity that controls various points of light regardless
of its physical connection.

A detailed list of the data and services available for each of the elements listed above is
presented in the annex section of this document.

3.2.4 Electric vehicle infrastructure

Similar to the case of public lighting systems, when it comes to EV EMS, it will be able to
provide data about the following elements:

 Physical elements:

o EV charging station plug

 Logical elements:

o Charging station (set of plugs)

D2.1 Reference Architecture and Energy Services v1.0 31

Data available for each of these elements is detailed in the annex section of this document.

3.3 SmartKYE architecture vision

In general, an architecture vision is created early on in a project lifecycle in order to provide
a high-level, aspirational view of the end architecture of the solution to be implemented. An
architecture vision serves also to reach an agreement among different stakeholders about
what the desired outcome should be for the architecture. SmartKYE architecture vision has
been developed through extensive consultation and discussions among the different project
stakeholders as well as considering potential end users of the platform.

The vision behind SmartKYE platform, and concretely through its architecture design is to
enable improvements in the availability and quality of energy-related data that enable
decision takers in a municipality or even at city-wide level, to take informed decisions that
lead to a more efficient use of energy resources, contributing in this sense to a reduction in
CO2 emissions.

By using SOA concepts to develop a federated platform, the basic idea is providing the
common infrastructure to enable many different stakeholders to interact in a transparent
way, exchanging valuable energy that could lead to the development of innovative energy
efficiency strategies (by public administrations) or even new solutions and services (by
private organizations) in a neighbourhood or city. This vision is better illustrated in the
following Figure:

Figure 6 Example of SmartKYE independent system interaction view via OESP

As it can be seen, SmartKYE architecture vision is based on the concept of a federated
platform, were several components of the architecture could be scattered across different
domains potentially managed by different stakeholders, although providing common
functionalities used by other components of the architecture. It is also relevant to highlight
that besides following a federated approach, SmartKYE platform still provide core
functionalities through the Open Energy Service Platform (OESP) component, a core
element whose main objective is to guarantee the operation of the overall platform. Third
parties will be able to access SmartKYE platform through a “SmartKYE domain connector”
Software component, whose main function is to adapt existing or legacy systems in a
particular domain, to the common and open SmartKYE interfaces. From an implementation
perspective, this component will be based on the SmartKYE service interfaces (e.g., the
OESP services and their integration to the other systems e.g. EMS, MCC, BC) explained in
subsequent chapters of this document.

D2.1 Reference Architecture and Energy Services v1.0 32

In summary, SmartKYE vision is to create an open energy service platform that will provide
the right tools to empower decision takers in public administrations to monitor and manage
in a more efficient way the energy resources available in municipalities and even in our
cities.

3.4 SmartKYE architectural principles

Architecture principles define the underlying general rules and guidelines for designing the
architecture. These principles describe the approach or strategy chosen to solve certain
non-functional requirements as qualities or constraints. In this sense, the TOGAF ADM
makes the step of establishing architecture principles fairly straightforward, which are
defined as part of the Preliminary Phase, and finally agreed from a governance perspective,
and used to guide and direct the organization on all future architectural decisions.

The TOGAF ADM provides a set of architecture principles, arranged in the following in five
principal categories [19]:

 Business Principles

 Data Principles

 Application Principles

3.4.1 Business Principles

Principle: Service orientation

Statement: The architecture will be based on the design of integration
services which mirror real world business activities

Principle: Minimize costs

Statement: The main objective will be to minimize application
development costs by taking profit of developments already
available

Principle: Maintenance requirements

Statement: Services must be coherent and somewhat independent
components of the overall system. This principle guarantees
lower maintenance costs

Principle: Single responsibility principle

Statement: Each component or module should be responsible for only a
specific feature or functionality, or aggregation of cohesive
functionality

D2.1 Reference Architecture and Energy Services v1.0 33

Principle: Reusability

Statement: No duplicate functionality. There should be only one component
providing a specific functionality. This functionality should not
be duplicated in any other component as far as possible. This
makes components cohesive and makes it easier to optimize
the components if a specific feature or functionality changes.

Components and subsystems should be suitable for use in
other applications and in other scenarios. Reusability minimizes
the duplication of components and also the implementation
time. Minimizing the number of applications used to perform
similar services reduces confusion and improves productivity

Principle: Interoperability

Statement: All subsystems should have the ability to operate successfully
by communicating and exchanging information with other
external subsystems written and run by external parties

Principle: Semantic interoperability

Statement: This is concerned to ensure that the precise meaning of
exchanged information is understandable by any person or
application receiving the data. The architecture must allow
different subsystems to effectively exchange data, combine it
with other information resources, and subsequently process it in
a meaningful manner. To achieve this, agreement is required
on the context and precise meaning of the exchanged data

Principle: Available Anytime from Anywhere

Statement: Access must be available to those entitled to it, in a timely
manner regardless of where they are or what time it is.

Principle: Sharing of Information

Statement: SmartKYE platform will facilitate sharing and use of knowledge
(energy-related) throughout stakeholders.

3.4.2 Data principles

Principle: Data is shared

Statement: Data is shared across different services. Data must be available
to those services that require these data to perform their duties.
It is less costly to maintain timely, accurate data in a single
application, and then share it, than it is to maintain duplicative
data in multiple applications

D2.1 Reference Architecture and Energy Services v1.0 34

Principle: Data is accessible / Boundaryless Information Flow

Statement: Required data is accessible for users (services) to perform their
functions. Accessibility involves the ease with which users
obtain information. Access to data does not constitute
understanding of the data. According to the Open Group,
Boundaryless Information Flow concept should strive to
eliminate stovepipes by promoting an architecture that allows
the sharing of data across systems.

Principle: Common vocabulary and data definitions

Statement: The data that will be used in the development of applications
must have a common definition to enable sharing of data. A
common vocabulary will facilitate communications and enable
dialog to be effective.

Principle: Data security

Statement: Data should be protected from unauthorized use and
disclosure. Data owners will take care of safeguarding the
privacy of data according to existing laws and regulations of
national security.

3.4.3 Application Principles

Principle: Technology independence

Statement: Front-end applications are platform independent and therefore
can operate on a variety of technology platforms. Independence
of applications from the underlying technology allows
applications to be widely used and increase user acceptance.
The intent of this principle is to ensure that application front-end
is not dependent on specific hardware and operating systems
software

Principle: Promote usability

Statement: An easy to manage GUI that integrates information coming from
different sources showing useful recommendations and offering
services from different parties could allow users to save time
and money and increase his/her satisfaction.

Principle: Ease-of-use

Statement: Applications should be intuitive and easy to use. The underlying
technology must be transparent. The more a user has to
understand the underlying technology, the less productive that
user is. Training will be kept to a minimum in order that the risk
of using the system improperly is low.

D2.1 Reference Architecture and Energy Services v1.0 35

4 SmartKYE Reference Architecture Concept

Following the SmartKYE architecture vision presented in previous section, and taking into
consideration the SOA Reference Architecture provided by The Open Group, a SmartKYE
RA was defined. Due to the architecture definition is a dynamic and iterative process, within
SmartKYE project two main releases of the architecture has been defined. The results
obtained for the first version of SmartKYE RA is presented along this section. The second
and final release of the SmartKYE architecture will be delivered by the end of the project
and presented in a second project deliverable “Reference Architecture and Energy Service
Specification – Final Version”.

4.1 Introduction

SmartKYE SOA RA will be described in detail from different perspectives. Along this
chapter is presented a conceptual view, where different building blocks of the architecture
are identified and their corresponding capabilities or functionalities are defined. The
concepts presented will follow The Open Group SOA RA, so that the building blocks
identified will be mapped to the different logical layers of SOA RA.

In order to ease the reading and understanding of the concepts presented in this section,
Figure 7 presents a relation between all these concepts. Capabilities as defined by The
Open Group represent “an ability that an organization or system possesses” (or will
possess), and their main advantage while designing an architecture is that capabilities allow
architects and stakeholders involved to focus the process on the “what” rather than on the
“how”. Capabilities are then expressed in functional and non-functional needs or
requirements that guide and constraint the architecture.

The layers in the SOA RA provide a convenient means of consolidating and categorizing
the various capabilities and building blocks that are required to implement a the SOA
architecture designed.

Figure 7 Relationships among Requirements, Capabilities, Building Blocks, and Layers
(Source: The Open Group)

From a logical perspective, the building blocks in each layer will interact among each other
in order to provide any given business capability. A typical interaction flow between the
different layers in the SOA RA provided by The Open Group is presented in Figure 8. Not
all layers are required in the development of an architecture e.g., Integration layer could

D2.1 Reference Architecture and Energy Services v1.0 36

interact with the Business Process layer or directly with the Services layer if the former one
is not supported (as it is the case in SmartKYE project).

Figure 8 Typical Interactions among the Layers of the SOA RA (Source: The Open Group)

Following section will describe in greater detail SmartKYE architecture layers, and derived
capabilities and building blocks. Along the analysis of the capabilities of each layer of the
architecture, it is assigned a number to every single capability to be supported by each
layer. For the sake of simplicity, following sections list only those capabilities supported by
the corresponding layer within the context of SmartKYE project. Each layer can provide or
support more capabilities, which can be review in the The Open Group SOA RA document
[15].

Finally, in subsequent chapters of this document the SmartKYE architecture vision is
complemented by providing detailed explanations on the information model and energy
services interfaces. Overall, these components will be the starting point for the development
of the architecture.

4.2 SmartKYE Reference Architecture – Horizontal or Functional Layers

Figure 5 illustrates the logical view of The Open Group SOA RA, where there are five
horizontal layers, which are more related to the functionality of the architecture, and four
crosscutting or vertical layers more related to supportive functionalities.

This section presents the analysis performed for those horizontal layers of relevance for
SmartKYE project. In particular, consumer layer will be briefly reviewed while the main
focus will be put in the service layer. Lower layers such as Service Components and
Operational Systems layers will not be covered since WP3 of the project fully is focused on
implementation issues of the architecture.

For each particular layer it is presented a list of capabilities organized in different categories
as it is stated in the standard. Along the analysis presented for each layer, only those
categories and corresponding capabilities of relevance for SmartKYE will be presented.
Numbers associated to each capability correspond to the number of that capability as
stated in The Open Group SOA RA.

D2.1 Reference Architecture and Energy Services v1.0 37

4.2.1 SmartKYE Consumer Layer

The consumer layer is the point where consumers interact with the architecture. It enables
an SOA to support a client-independent, channel-agnostic set of functionality, which is
separately consumed and rendered through one or more channels (client platforms and
devices). Thus, it is the point of entry for interactive consumers (humans and other
applications/systems) and services from external sources such as Business-to-Business
(B2B) scenarios. In the case of SmartKYE project, such capabilities will be offered by the
different cockpits envisioned where applicable.

Consumer layer capabilities:

There are multiple categories of capabilities that the consumer layer needs to support. The
following list summarizes these capabilities.

Table 4 Consumer Layer Capabilities

Consumer Services.

2. Ability to support consumer interaction and integration; e.g.,, the ability to capture
the input from the user (consumer) of the SOA and provide the response to the
consumer

Presentation Services

3. Ability to support the creation of a presentation view by the composition of a
number of atomic components

4. Ability to configure information which will support specific capabilities associated
with ensuring consistency (similar to a style guide)

5. Ability to provide navigation logic and flow for the processing of consumer
interactions (presentation control)

6. Ability to provide the Consumer layer with the ability to support customer-specific
information (enabled by the Information Layer) and personalization and customer-
specific preferences to be used by the presentation controller for navigation and
content presentation purposes

Backend Integration

8. Ability to mediate services from other SOA layers such as the Business Process
Layer and the Integration Layer into the Consumer Layer; it provides the ability to
integrate the underlying SOA into the Consumer Layer

9. Ability to support the translation of input data/content from a format supported by
the user of the SOA to a format required by the other layers of the SOA and to
convert content returned from them into a user acceptable response format

Caching and Streaming Content

10. Ability includes the handling of streaming content

11. Ability to cache interaction data to improve performance and quality

Security and Privacy

12. Ability to provide access to authentication/authorization capabilities (enabled
through policies) to be used by the presentation controller to allow/prevent what
content can be presented to the consumer

13. Ability to filter to control access to the underlying SOA

14. Ability to monitor the usage of the Consumer Layer components

D2.1 Reference Architecture and Energy Services v1.0 38

Information Access

8. Ability to access data and metadata through the Information Layer

Consumer layer capabilities and building blocks mapping:

The mapping between the capabilities previously listed and the corresponding building
blocks of SmartKYE architecture is presented in the Annex section of this document.

4.2.2 SmartKYE Service Layer

The Services Layer consists of all the services defined within the SOA. The Services Layer
is the layer of the SOA, which describes functional capabilities of the services in the
SOA. The Services Layer introduces the notion of services, which are well-defined
interfaces for a capability of the architecture.

This layer primarily provides support for services, from a design-time perspective. It defines
runtime capabilities for service deployment, but the runtime instantiation of the building
blocks enabling these capabilities are housed in the Operational Systems Layer. It also
provides the service contract elements that can be created at design time to support
subsequent runtime requirements.

Service specifications provide consumers with sufficient detail to locate and invoke the
business functions exposed by a provider of the service. Ideally, this is done in a platform-
independent manner. The main responsibilities of the Services Layer include:

 To identify and define services

 To provide a container which houses the services

 To provide a registry that virtualizes runtime service access

 To provide a repository to house and maintain service design-time information

Service layer capabilities:

There are multiple categories of capabilities that the services layer needs to support. The
following list and table summarizes these capabilities:

Table 5 Service Layer Capabilities

Service Definition

1. Ability to define services in terms of service descriptions/contracts

Service Runtime Enablement

3. Ability to enable the service container and the service registry to manage the
storage and invocation of different services with minimal impact to users of the SOA

4. Ability to interact with other layers within the SOA RA, particularly the Integration
Layer

5. Ability to define the binding to the Service Component that implements a given
service

6. Ability to support the hosting of services

Access Control

12. Ability to support the integration of the security access control descriptions for
services with the runtime elements of the Governance and Quality of Service Layers
of the SOA RA

Service layer capabilities and building blocks mapping:

D2.1 Reference Architecture and Energy Services v1.0 39

The mapping between the capabilities previously listed and the corresponding building
blocks of SmartKYE architecture is presented in the Annex section of this document.

The core elements in this section are the service definition capability (capability #1 in Table
5) and the corresponding service building block. Although represented only as one building
block. This will be translated as several different SmartKYE services, which actually
constitute the interface of the platform. The specification of these services is further
explained in following chapters of this document.

4.3 SmartKYE Reference Architecture – Cross-cutting or Supportive Layers

This section focus on the analysis of the SOA RA crosscutting layers responsible for
supporting other layers in the architecture (horizontal layers), and in consequence certain
capabilities required for the overall architecture.

4.3.1 SmartKYE Integration Layer

The integration layer is a key enabler for an SOA as it provides the capability to mediate,
which includes, transformation, routing, and protocol conversion to transport service
requests from the service requester to the correct service provider.

This layer enables the service consumer/requester to connect to the correct service
provider through the introduction of a reliable set of capabilities. The integration can start
with modest point-to-point capabilities for tightly-coupled end-points and cover the spectrum
to a set of much more intelligent routing, protocol conversion, and other transformation
mechanisms often described as, but not limited to, an Enterprise Service Bus (ESB). WSDL
specifies a binding, which implies location where a service is provided, and is one of the
mechanisms to define a service contract. An ESB, on the other hand, provides a location-
independent mechanism for integration, and service substitution or virtualization.

Integration layer capabilities:

There are multiple categories of capabilities that the integration layer needs to support in
the SOA RA. The following list and table summarizes these capabilities:

Table 6 Integration Layer Capabilities

Communication, Service Interaction, and Integration

1. Ability to take a service call and messages to the end-point; e.g.,, to enable a
service consumer to connect/interact with service providers

2. Ability to handle service request and service response

3. Ability to support communication through a variety of protocols

4. Ability to support variety of messaging styles such as one-way, pub-sub, request-
response

5. Ability to route messages to the correct service provider

6. Ability to transform protocol formats; e.g., from SOAP/HTTP to SOAP/Message
Queue or SOAP/JMS

7. Ability to link a variety of systems that do not directly support service-style
interactions so that a variety of services can be offered in a heterogeneous
environment

Quality of Service

13. Ability to handle transactions from the other layers, especially when a statically

D2.1 Reference Architecture and Energy Services v1.0 40

composed service invokes a service chain

14. Ability to handle exceptions raised in the process of service invocation and
message passing

Security

15. Ability to authenticate/authorize for service invocation and message routing

Integration layer capabilities and building blocks mapping:

The mapping between the capabilities previously listed and the corresponding building
blocks of SmartKYE architecture is presented in the Annex section of this document.

4.3.2 SmartKYE Quality of Service layer

The key responsibilities of the quality of service layer include:

 Monitoring and management both at the business level (e.g.,, business processes),
and at the IT systems level for the security, health, and wellbeing of IT systems,
services, applications, networks, storage, and compute servers

 Monitoring and enforcement of a multitude of policies and corresponding business
rules including business-level policies, security policies, access privileges, data
access policies, etc.

QoS layer capabilities:

There are multiple categories of capabilities that the QoS layer needs to support. Although
The Open Group provides an extensive list of QoS capabilities (more than 80) that any
SOA could support, within the context of SmartKYE project only a few of them will be
consider and finally implemented. In case the platform moves to a commercial stage,
additional QoS building blocks might be required to be added to the architecture.

The following list summarizes the QoS layer capabilities considered in SmartKYE:

Table 7 QoS Layer Capabilities

Security Management:

This category of capabilities provides the ability to manage roles and identities, access
rights and entitlements, protect unstructured and structured data from unauthorized access
and data loss. Within this category, the main capabilities considered are:

9. Ability to ensure appropriate authentication based on proper roles

10. Ability to ensure appropriate authorization based on proper roles

11. Ability to ensure appropriate encryption of messages

13. Ability to assure that access to resources has been given to the right identities,
at the right time, for the right purpose

15. Ability to protect unstructured and structured data from unauthorized access and
data loss, according to the nature and business value of information

17. Ability to address how software, systems, and services are designed, developed,
tested, operated, and maintained throughout the software lifecycle including the use
of technology as well as processes and procedures which are followed during all
aspects of software development and deployment

21. Ability to provide and enforce policies for access control

D2.1 Reference Architecture and Energy Services v1.0 41

QoS layer capabilities and building blocks mapping:

The mapping between the capabilities previously listed and the corresponding building
blocks of SmartKYE architecture is presented in the Annex section of this document.

4.3.3 SmartKYE Information Layer

The information layer is responsible for manifesting a unified representation of the
information aspect of an organization as provided by its IT services, applications, and
systems enabling business needs and processes and aligned with the business vocabulary.

In particular, this layer can be thought of as supporting multiple categories of capabilities of
the SOA RA:

 Ability to support information services capability, critical to support a shared,
common and consistent expression of data

 Ability to integrate information across the enterprise in order to enable information
services capability

 Ability to define metadata that is used across the SOA RA and in particular the
metadata that is shared across the layers

 Ability to secure and protect information

 Ability to support business activity monitoring and critical to the usage of the SOA
RA and its realization

In particular, an information virtualization and information service capability typically
involves the ability to retrieve data from different sources, transform it into a
common format, and expose it to consumers using different protocols and formats.

Information layer capabilities:

Since this layer is relevant for SmartKYE platform design, the following list provides a detail
of the main characteristics of each category of capabilities information layer should support.
We have to point out that these are general guidelines we consider but the degree to which
these will be reflected and/or implemented may differ. These categories are:

 Information Services: This category of capabilities addresses the support of
information services. Information services provide a uniform way of representing,
accessing, maintaining, managing, analysing, and integrating data and content
across heterogeneous information sources. There are primarily two approaches to
achieve that. First approach focuses on building a single view of business-critical
data for customers, products, location, and others delivered in context; e.g.,, single
view of enterprise (MDM) approach. The second approach focuses on integrating
the appropriate information in a timely and consistent manner, analysing and
attempting to improve the quality of data, and ensuring consistency and integrity of
business-critical data and facts across the enterprise. This approach is known as
the Information as a Service (IaaS) approach.

 Information Integration: This category of capabilities addresses the support of
information integration and enables capabilities for information services.

 Basic Information Management: This category of capabilities addresses basic
information management concerns such as metadata and unstructured data
management.

 Information Security and Protection: This category of capabilities addresses the
support of information security and protection concerns.

 Business Analytics: This category of capabilities addresses the support of

D2.1 Reference Architecture and Energy Services v1.0 42

business analytics and business activity monitoring. It enables organizations to
leverage information to better understand and optimize business performance. It
supports entry points of reporting to deep analytics and visualization, planning,
aligned strategic metrics, role-based visibility, search-based access and dynamic
drill-through, and alert and detect in-time actions.

 Information Definition and Modelling: This category of capabilities defines
fundamental constructs of SOA information and events.

 Information Repository: This category of capabilities addresses support of the
information repository in order to store data such as metadata, master data,
analytical data, operational data, and unstructured data.

There are multiple categories of capabilities that this layer needs to support in the SOA RA.
The following list and table summarizes these capabilities categorized according to the
different categories previously listed:

Table 8 Information Layer Capabilities

Information Services

1. Ability to expose data as services, to add/remove/manipulate data entries in
different services or service components, and to disable some data from outside
access

3. Ability to handle representing data from various data sources in a unified data
format; ability to transform and map data from one format to another and align data
from different resources

5. Ability to manage the hierarchy and relationship among data

Information Integration

9. Ability to perform Extract-Transform-Load (ETL capabilities) data from one source
to other; ability to extract relevant information from sources, transform the
information into the appropriate integrated form, and load the information into the
target repository

11. Ability to virtualize data representing actual data from the actual data
repositories of various types, such as a DB2 database in the Operational Systems
Layer, or an Excel file

12. Ability to handle data transformation (including transformation of data types and
contents) and to aggregate data from multiple data sources

15. Ability to cache data in support of the data virtualization/information services
capability

Information Security and Protection

19. Ability to handle access privileges of various participants to data

20. Ability to control access on individual data items

Business Analytics

24. Ability to visualize interactively the results from business analytics and data
analysis

Integration layer capabilities and building blocks mapping:

The mapping between the capabilities previously listed and the corresponding building
blocks of SmartKYE architecture is presented in the Annex section of this document.

D2.1 Reference Architecture and Energy Services v1.0 43

4.3.4 SmartKYE Governance layer

SOA governance ensures that the services and SOA solutions within an organization are
adhering to the defined policies, guidelines, and standards that are defined as a function of
the objectives, strategies, and regulations applied in the organization and that the SOA
solutions are providing the desired business value.

The governance layer includes both SOA governance (governance of processes for policy
definition, management, and enforcement) as well as service governance (service
lifecycle). This covers the entire lifecycle of the services and SOA solutions (e.g.,, both
design and runtime) as well as the portfolio management of both the services and SOA
solutions managing all aspects of services and SOA solutions such as Service-Level
Agreement (SLA), capacity and performance, security and monitoring).

Governance layer capabilities:

There are multiple categories of capabilities that the layer needs to support in the SOA RA.
The following table summarizes these capabilities:

Table 9 Governance Layer Capabilities

SOA Metadata Storage and Management

8. Ability to support the capture of service-related information at design time, and its
dissemination to the other layers in the SOA in a standards-compliant interoperable
manner

9. Ability to support the storage and dissemination of information supporting these
capabilities:

 Service contract definition (e.g., WSDL)

 Service policy management

 Service version information management

 Service dependencies (e.g., the ability to integrate with a CMDB tool)

 Service management descriptions

 Canonical form and domain model specification for integration with the
Information Layer

13. Ability to advertise for services and metadata about services

14. Ability to find or query for services and metadata about services

Management

31. Ability to do change control to implement and maintain governance

Governance layer capabilities and building blocks mapping:

The mapping between the capabilities previously listed and the corresponding building
blocks of SmartKYE architecture is presented in the Annex section of this document.

4.4 SmartKYE architecture conceptual view

The conceptual view of SmartKYE architecture lays out domains and identifies architectural
building blocks within these domains. The buildings blocks derived from the analysis
performed in the previous section have been mapped to specific layers of the Open Group
SOA RA. The result obtained is the SmartKYE SOA Reference Architecture conceptual
view presented in Figure 9:

D2.1 Reference Architecture and Energy Services v1.0 44

Figure 9 SmartKYE SOA Reference Architecture - Conceptual view

D2.1 Reference Architecture and Energy Services v1.0
 45

The previous conceptual view of the SmartKYE architecture showcase the building blocks
identified as core elements of the architecture. Besides mapping each building block to
specific layers according to The Open Group SOA RA, Figure 9 shows two different kinds
of building blocks: (i) those under SmartKYE platform domain (in orange), and (ii) those
under third-parties domain (in green).

This separation becomes clearer if we analyse for the crosscutting layers. Since most of the
building blocks and their corresponding capabilities will be developed and deployed in the
OESP platform, the core element of SmartKYE architecture, these buildings blocks have
been assigned to the SmartKYE platform category. However, in the case of services, from a
conceptual perspective they have been assigned to SmartKYE platform category, although
from an operational point of view these services will be developed within SmartKYE project
and run in physical systems or servers operating in many different geographical locations,
and possible managed by different stakeholders (what is actually what service component
and operational system layers illustrate).

The idea behind this separation of building blocks is to illustrate the concept of a federated
architecture previously shown in Figure 6. Figure 10 provides a different perspective of the
same concept, where it is clear that there can be service requesters/providers and
SmartKYE services, which are software components that run either in SmartKYE platform
or in third-parties platforms, that can interact seamlessly through SmartKYE platform
(OESP component).

Figure 10 SmartKYE platform interaction example

D2.1 Reference Architecture and Energy Services v1.0 46

5 SmartKYE Service Architecture

5.1 Service Architecture Overview

The SmartKYE service architecture is depicted in FMC notation (www.fmc-modeling.org)
[20] in Figure 11. We can clearly depict the main stakeholders and parts. The users (e.g.,
the municipality business and technical manager) interact via the BC and MCC
respectively. Both BC and MCC make service calls to the services provided by the OESP
platform. The EMSs are attached to the OESP and interact with it via well-defined services
on-demand. The OESP exposes several services as shown. Access to these services is
allowed with the necessary valid security credentials. The OESP stores locally minimum
information for its own operation as well as cache of some usually accessed data.

Figure 11 SmartKYE Service Architecture

We can distinguish the following services:

 Attribute: This provides information complementary to the Entity service dealing
with internal OESP and EMS data. Attributes can be used together with the

Business

Cockpit (BC)

Monitoring &

Control Cockpit

(MCC)

R

R

CEP

Entity

Group

Attribute

Metric

Strategy

Security Manager

R

R

Open Energy Service
Platform (OESP)

EMS

3
rd

 party

systems

Entity

Metric

Message

measurements

configuration

R

R

R

3
rd

 party services

R

R

strategies

registry

CEP rules

cache

Attribute

Message

http://www.fmc-modeling.org/

D2.1 Reference Architecture and Energy Services v1.0 47

Message Service for control/management purposes.

 CEP: Complex Event Processing is used for calculating KPIs from simpler metrics
as well as delivering the relevant information in an event based manner.

 Entity: This is a general-purpose service of an entity description. It offers
information about the attributes, KPIs and metrics (as defined in D1.1) being
provided by an individual entity.

 Group: This service manifests the creation of ad-hoc groups (that may span one or
more EMSs) and can be used for getting e.g. aggregated data

 Message: This service corresponds to the control part applied from the MCC to the
various EMSs in the system. This, together with functionalities of the Attribute
service, is used for control/management within SmartKYE.

 Metric: This service primarily provides the basic metrics as defined in D1.2 of
SmartKYE project and is designed to be extendable to future requirements for the
metrics. It is used also as a basis for the CEP service.

 Security: basic authentication and authorization operations.

 Strategy: Strategies can be communicated from BC to the MCC via this service
which has storage and retrieval capabilities

Table 10 Service implementation availability in OESP and EMS

Service host
Service Name↓

OESP EMS

Attribute X x

CEP x

Entity x x

Group x

Message x x

Metric x x

Security x

Strategy x

As we can see in Table 10, all of the services are implemented in OESP which acts as a
glue between the EMS and the cockpits, and some of them are realized in the EMS. The (x)
implies indirect or optional usage of the respective service, e.g., the security service is used
by each request indirectly or the CEP. We have taken extra steps to ensure that a common
API is used for both interactions e.g., BC/MCC with OESP and OESP with EMS for the
common set of services.

Table 11 Service usage by the OESP

OESP Service
uses ↓

Attribute CEP Entity Group Message Metric Security Strategy

Attribute (OESP) (X)

Attribute (EMS) X (X)

CEP X (X)

Entity (OESP) X X (X)

Entity (EMS) X (X)

Group X X X (X)

Message (OESP) (X)

D2.1 Reference Architecture and Energy Services v1.0 48

Message (EMS) X (X)

Metric (OESP) X (X)

Metric (EMS) X (X)

Security

Strategy (X)

Table 11 provides an overview of how OESP uses the available services that may be
implemented in OESP and/or EMS. Table 12 depicts the usage of services by the two
cockpits.

Table 12 Service usage by the BC and MCC

Service used by
Service Name↓

BC MCC

Attribute X x

CEP x x

Entity x x

Group x x

Message x

Metric x x

Security (x) (x)

Strategy x x

5.2 Service Specification

5.2.1 Entity Service

Every EMS connected to the platform is defined as an entity. Furthermore, each EMS can
offer its underlying entities to the service consumers, where OESP service consumers
(such as BC and MCC) are able to communicate to any of the entities. In dependency of
their underlying complexity, entities can be top level entities (e.g. an EMS), or children of
the top level entities e.g. a single controllable light point of a public lighting system. The
platform offered services are designed to deliver a service consumer to receive the top level
entities and also their descendants. Once all entities can be accessed, they will be
providing timeseries of predefined metrics (as defined in D1.2 of the project) to service
consumers, therefore the series they provide are also reachable by the entity service.

D2.1 Reference Architecture and Energy Services v1.0 49

Figure 12 The Entity Service of the platform

As depicted in the Figure 12, most of the listed methods consume the basic EntityFilter
object and return a list of the service related Entity objects. One of the methods is used to
return parental objects and one can notice that no input parameter is required. Due to the
very limited number of EMSs connected to the platform such filter is not required, while
other methods use the filtering object to specify interest in description of any entity of the
system. The same filtering can be applied to the metrics they provide, where the service
consumer understands quality and capability of delivering certain metrics from filtered
entities. The complete technical description of the depicted API is shown in section 9.7.2.

5.2.2 Group Service

Entities within the platform are accessible through top-level entities that hold the logic for
services they offer. One can consider a top-level entity as one group of all of its underlying
entities. However, in many SmartKYE scenarios the cockpits do not always focus to one
particular entity, but rather to certain characteristics of entities. For example, one may be
interested in observing only wind turbines accessible through many different top-level
entities. Although this particular case may be achieved already by filtering of the entity type
(with EntityFilter from the section 6.2), more complex grouping might be required. The
grouping services are envisioned for those purposes. Once entities of interest are identified,
one can connect those entities into a logical group. This service is depicted on Figure 13.

D2.1 Reference Architecture and Energy Services v1.0 50

Figure 13 Services for entity grouping

The creation method uses the unique entity identification and takes a list of them for
composing a group. After its creation, the method returns the group identification of the
OESP. The other two methods are used for deletion of a group and listing of its members.
We do not support the modification of existing groups to increase the scalability of the
distributed platform: modification would require an always-consistent view of the groups of
all platform subsystems. However, with the current approach a subsystem only needs to
ask for a group if a request contains it and the deletion of a group can be propagated in the
background, since at most a group could be used for some more time but never lead to an
incorrect view. The WSDL description of the service is documented in section 9.7.3.

5.2.3 Metric Service

Experiences obtained from previous smart grid projects [10] helped unifying numerous
energy services usually envisioned to be individual as a single service. This is the
MetricService responsible for delivering advanced and expandable functionalities to the
OESP platform. Once entities are reachable through the OESP, significant part of their
purpose within the platform is timely delivery of the metrics they are capable, or willing, to
provide. This service is responsible for delivering these metrics as timeseries, last value
and even to subscribe to multiple metrics of one or more entities. In context of this project, a
metric is everything that can be represented by a real number at a point of time. With this in
mind, certain mathematical operations are possible for all the metrics. In fact, aggregating
the same metric from numerous entities is one of the main interests of the SmartKYE
cockpits. Figure 14 provides an overview of the method definitions of the service, with
additional objects relevant for their functionality description.

Figure 14 Metric Services for entities of the OESP

D2.1 Reference Architecture and Energy Services v1.0 51

Listed methods of the MetricService are mostly requiring the EntityFilter object for
specifying the entities of interest. The first two methods offer access to the metrics of a last
sampled value as metric timeseries. Since the SmartKYE architecture is distributed, the
methods require a timeout of the request. If numerous entities are observed, the timeout
value will trigger the delivery of already obtained results. Entities with no response, or no
data availability, will be listed in the EntityError (defined in the section 6.2) array of the
response result. As depicted, results received may take one value or series of them e.g.,
MetricValueResult and MetricTimeseriesResult respectively.

Some more parameters for the metric timeseries method are required. As input the method
also takes the Interval description and their count. For example, one day in hourly basis is
represented with start time and its duration (of one hour) within the Interval object, while
number of consequent intervals is a parameter of the method. Finally, the result of the
response from the entities filtered can be aggregated by simply assigning the TRUE value
to the aggregation parameter. As already mentioned, even if some entities will not deliver
their individual metrics to the OESP; still the aggregation will be executed for available
results while unavailable ones will take their place in the EntityError list of the
MetricTimeseriesResult object.

The subscription to the metrics of entities stems from the near real-time cockpit
functionalities, for both BC and MCC. Subscriptions are envisioned to deliver metrics from
one or more entities in periodical fashion. As the last two methods of Figure 14 indicate, for
every subscription one will need to provide subscriber identification (e.g., response back
URL), MetricType and Interval object. The Interval information is later used for periodic
delivery of the specified metric. Similarly to the timeseries method, the subscription
responses can be signed to be aggregated if required. Finally, once a cockpit subscribes
and a response back URL is provided, the implementation of a notification interface is
expected on subscriber’s side. Figure 15 describes the service required to be implemented
on cockpit’s side.

Figure 15 Service for notification of periodical metrics of entities

Only one method is envisioned and requires subscription handle provided on subscription
to the metric service. Once a subscription is identified, metric values and their timestamp
are requested as input to the notification service. Note that the timestamp here is not the
original timestamp, but rather one that is assigned to the notification interval. Both, regular
and subscriber services are described in WSDL within the section 9.7.5.

5.2.4 Attribute Service

Heterogeneity of the entities within the OESP may bring extreme complexity of identifying
services of mutual interest for numerous different entity types. Previous experiences from
SmartGrid projects (www.ict-nobel.eu) allowed introduction of the MetricService for
delivering huge number of functionalities from the OESP platform. Still, uniqueness of the
entities involved in this project required a more abstract approach to describe capabilities
and information offered by an entity. Attributes of entities therefore take shape in a global
object named BaseAttributeValue. The values of attributes can be updated or retrieved as
last assigned value or even series of changes in a timeframe. In Figure 16 one can have

http://www.ict-nobel.eu/

D2.1 Reference Architecture and Energy Services v1.0 52

overview of the methods provided by the service.

Figure 16 Services for entity attributes

The first two methods are used for updating and retrieving values of different AttributeType.
The previously mentioned timeseries method can be used for retrieving series of variable
updates or the actual objects representing a certain attribute. The object of their abstraction
is named EntityAttributeValue holding the timestamp of the assignment of the value, with
the timestamp variable. Finally, the three subscription methods listed are similar to the
functionalities of the MetricService, thus the AttributeService also accepts the subscription
for provided attribute types for filtered entities. Similarly, to the MetricService, every
subscriber needs to implement the notification services, here depicted in Figure 17.

Figure 17 Service for notification of attribute updates

Only one method to notify an attribute update is envisioned; and it takes a list of

D2.1 Reference Architecture and Energy Services v1.0 53

EntityAttributeValue objects as the input. The other parameter is the subscription handler
used to identify a subscription. Note that timestamp of the updated attributes is actually the
original timestamp of their change, thus one can track behaviour of any attribute over time.
The complete description of the AttributeService(s) is included as WSDL in section 9.7.1.

5.2.5 Complex Event Processing (CEP) Service

5.2.5.1 Introduction

The complex event processing service (CEP) allows the clients of the platform to push (a
part of) the processing of data in the platform. This approach fosters the sharing of common
processing functionality, e.g. the calculation of KPIs as defined in the SmartKYE deliverable
document D1.2, between different clients and allows the platform to distribute work among
its distributed subsystems and increase the scalability of the system. This also allows
sharing the handling of errors between different stakeholders (e.g., when information from
some entities is missing).

For increased flexibility compared to simple query processing approaches, we choose to
represent the necessary processing rules as a processing graph consisting of a set of
connected processing components (processing steps).

Figure 18 CEP example for computing the KPI "Difference in energy consumption"

In Figure 18, we present as a simple introductory example a potential processing graph for
the calculation of KPI #5 “Difference in energy consumption” (defined in the SmartKYE

MetricAcquisition
Entity

Timeframe
Interval
Metric

MetricAcquisition
Entity

Timeframe
Interval
Metric

MetricDifference

CEPMetricResult

Component

Input Port

Output Port

Connection

Produces
CEPTimeseriesResult

Calculates difference
between time series

Obtains
time series
from OESP

D2.1 Reference Architecture and Energy Services v1.0 54

deliverable document D1.2), which just compares the energy consumption of the same
entity between two intervals. The example graph depicts four components: two
MetricAcquisition components and one MetricDifference and CEPMetricResult component.
Each component can have an arbitrary number of input ports where data is fed into the
components and an arbitrary number of output ports where the processing results of the
components are available. At the bottom of the graph, we show two input components that
do not have input ports. In this case, these are components using the MetricTimeseries
service of the OESP to request data. In the center of the graph (Figure 18) is the single
processing component. In this instance, it is a (rather simple) specialized component that
works on two metric time series and computes their difference. It contains two input ports,
where the data from the MetricAcquisition components is fed in. The output of the
MetricDifference component feed its result into the CEPMetricResult component at the top
of the graph which is responsible for converting the data in the same output format that is
provided by the getMetricTimeseries calls. The final concept of the CEP system shown in
the graph is the list of parameters of the processing components. In this case, only the data
acquisition components feature parameters that describe which data (Timeframe, Interval,
Metric) they should obtain from where (Entity).

It is important to note that while in this case both the graph and the data processing
component that computes the difference between two time series are rather simple, the
system targets a wide range of possible data processing needs. On the one hand, it would
for example be possible to implement a complex forecasting algorithm as a single
component – with significantly more logic than provided by common query languages. On
the other hand, the system allows creating much more complex graphs for example using
basic pre-processing, filtering and feature recognition components with suitable parameters
and connections to implement event detection systems.

In the following section we provide a more detailed description of the concepts provided by
the CEP and the API for using it offered by the OESP. This description will be
complemented by a more detailed specification on how to develop the processing
components in D3.1.

While we have firm plans for developing several components in the project, e.g.,
components that interact with the OESP API and to compute the KPIs described in D1.2, is
important to note that there is a strong focus on providing an extendable system that
provides enough flexibility to allow implementing specialized functionality within the project
and beyond.

5.2.5.2 CEP System

In this section, we describe the basic building blocks used in our complex event processing
system.

Component

The component is a reusable building block that constitutes the data processing logic.
Similar to other systems such as J2EE or OSGi, components can be defined at arbitrary
levels of granularity. However, in contrast to these systems, they can be instantiated
multiple times and they provide parameters to support different application requirements.

There are three important subclasses of components:

 Input components: the input components do not have any input data and instead are
responsible for obtaining information from outside the CEP, e.g., by calling the
OESP metric services provided, or generate data based on their parameters.

 Processing components: processing components have both input and output ports
and are activated as soon as information for all ports is available.

D2.1 Reference Architecture and Energy Services v1.0 55

 Result/Notification components: these components are responsible for providing the
data to the outside of the CEP either by preparing them in an expected format or by
directly invoking outside services, e.g., for push notifications.

While the granularity of the input components and the output components is usually easy to
determine, there is a greater variety of possible divisions for the processing components.
There is a need to weight the benefit of small components to encourage reusability with
overhead involved in exchanging data between components and the complexity involved in
extracting the suitable parameters of more complex systems. While our system does not
impose a certain granularity, it is certainly not a goal to obtain the result of a simple formula
by constructing a graph of individual simple arithmetic operators. The provided example in
Figure 18 is from this perspective an unusual example. However, the need for the
difference between two time series is so common, that it merits a dedicated component.

Parameter

Each component can be associated with a list of typed parameters (e.g., String, Integer,
etc.) that allows developing generic components and fosters reusability of component
implementations among different applications. In the example shown in Figure 18, the input
components offer parameters to specify which data should be obtained from the OESP.
However, parameters can be used by all kinds of components, e.g., a notification
component could have a parameter for specifying the subscriber URL or a feature
recognition component could expose threshold parameters. It is also possible (and shown
in the example) to have multiple instances of a component with different parameters.

Input/Output Port

In order to facilitate the composition of multiple processing components, each component
can contain strongly typed input and output ports. An output port of a component can be
connected to an input port of another component with the same type.

Connection

We use connections to establish a link between an output port of one component and an
input port of another component. However, to increase reusability and robustness, a
component is not aware of which other components are connected to it. Instead, a
component is simply informed about new data by the CEP system and provides its output
data back to the CEP system. This also allows 1: n connections where one output port is
connected to several input ports.

Graph and graph instance

Finally, the processing graph specifies the necessary components and their
interconnections to implement a certain data processor. This is similar to implementing a
class in an object-oriented programming language. The CEP system then allows
instantiating such a graph which requires resolving all parameters provided by the
components of the graph.

Figure 18 also exemplifies common use cases for the parameters of a processing graph.
Some parameters are specified already in the graph description. In the example the Metric
parameters of both acquisition components would be set to EnergyConsumption. Some
parameters should be specified during instantiation such as the interval and timeframe
parameters, and some parameters should be specified during instantiation but should be
shared between several components. In the example, the entity parameter should be

D2.1 Reference Architecture and Energy Services v1.0 56

shared as the process is for computing the difference of the energy consumption of the
same entity in different time intervals.

Therefore, the system design considers not only parameters of the components but
parameters of the whole graph. For each component parameter, there are three
possibilities:

 Resolved parameter: a parameter value is already specified in the graph

 Bound parameter: a parameter is bound to a parameter exposed by the graph and,
therefore, must be specified during instantiation

 Bound parameter with default value: similar to the previous possibility the parameter
is exposed but a default value is provided to make setting the parameter optional
during instantiation

The binding of a component parameter to a graph parameter allows ensuring that some
parameters of different components share the same value.

CEP data model and API

Figure 19 CEP Data Model

Since the CEP data model and its API are very tightly coupled, we show both here for
easier understanding. In Figure 19, we can see the UML class diagram for the parts of a
processing graph. The structure follows closely what has been described in the previous
subsection regarding the graph, component, port and connection class. The distinction
between resolved parameters and bound parameters for the component allows for
describing the sharing of parameters as explained above.

D2.1 Reference Architecture and Energy Services v1.0 57

Figure 20 CEP API

Since most of the complexity of the CEP system is contained in the data model, the API
(Figure 20) is intentionally kept simple. On the one hand, it provides methods for storing
and retrieving processing graphs, which also allows sharing and reuse of graph definitions
between several clients. On the other hand, it provides methods for creating and controlling
the instances of these graphs. Since the processing of metric time series is by far the most
common use case, the API contains a dedicated convenient method to handle this.

5.2.6 Strategy Service

Within the vision of the SmartKYE project, strategies are expected to be generated by the
BC and communicated to the MCC in its decision process on applying energy efficient
control to the underlying infrastructure. These strategies are communicated from the BC to
the MCC via the Strategy service running in OESP.

The StrategyService provides two basic methods of Strategy, which are getStrategyActon()
and storeStrategyAction() for retrieval (expected to be used by the MCC) and storage
(expected to be used by the BC). Figure 21 shows the structure of StrategyService.

Figure 21 Services for Strategy

The method getStrategyAction() gets a strategy by StrategyActionID and returns the results
as a StrategyAction. The method storeStrategyAcition() stores a strategy. The BC and MCC
are expected to exchange XML documents which have all the necessary information.

5.2.7 Message Service

D2.1 Reference Architecture and Energy Services v1.0 58

Message services together with functionalities of the Attribute service are used for
control/management of specific entities in the system by the MCC.

Control of specific entities within SmartKYE is enabled by the characteristics of each
particular EMS. As it was explained in previous sections, from the initial analysis of each
single EMS to be integrated in each of the pilot site, there are several control capabilities
offered by specific EMS, e.g., setup of operation parameters or control for the public lighting
EMS (see Annex section).

Thus, message services are based mainly on a “message type” (EMS dependent) and the
corresponding target entity. Not all EMS will require to implement and offer these
capabilities, e.g.,, a weather forecast service does not need to offer any control capabilities;
it will simply provide weather data as required.

5.2.8 Security

5.2.8.1 Introduction and Rationale

Security is critical for architectures like SmartKYE and it poses several challenges:

 Deals with confidential and sensitive information

 Various stakeholders with different security needs

 Architecture supports data exchange between all stakeholders, but individual
stakeholders can have different contracts providing different data or quality-of-
service

 Federated system with stakeholders of different institutions using different
technologies

 OESP handles data not for itself but for clients

To handle all these challenges, the security model must embrace the federated nature of
the envisioned system in a similar way as the architecture. While data confidentiality can be
achieved using SSL/TLS encrypted communication between all partners, authentication
and authorization requires a two-level approach. On the one hand, the interactions between
the OESP and the other stakeholders are secured using SSL/TLS certificates. On the other
hand, the interactions of stakeholders among each other but via the OESP is handled with
decentralized responsibilities where the data providing stakeholders can decide which data
to provide to whom and the OESP acts as an intermediate for the clients.

The advent of cloud technologies has also led to increase interactions among these
services, where e.g., an online task management service can be instructed to use an online
calendar service by another provider to insert deadlines into the calendar view. To solve the
problem of controlling the access of one service to the data of another as an intermediate
for the owner of the data, the OAuth protocol has been developed. Since this protocol is
applicable to the challenges provided by the SmartKYE vision, its standardization by the
IETF and the widespread use by global service provides such as Google, we choose it as
the mechanism for the SmartKYE security architecture.

5.2.8.2 The OAuth 2.0 Protocol

In the following, we provide a short introduction to the OAuth 2.0 protocol [21] as well as a
mapping of the entities to the stakeholders in the SmartKYE architecture.

D2.1 Reference Architecture and Energy Services v1.0 59

Figure 22 OAuth 2.0 High-Level Overview

In Figure 22 we show the main stakeholders and a high-level overview of their interactions.
The terms used by the OAuth protocol and the common representative stakeholder of the
SmartKYE architecture are represented.

It is important to highlight that at least three different institutions are present: the resource
owner, for SmartKYE mostly a cockpit, the OESP and the resource server. The
authorization server belongs conceptually to the institution of the resource server, but can
technically be operated by a separate party. Furthermore, we want to highlight that the
“resource owner” and the “resource server” are from different institutions and while the term
“resource owner” is applicable to common online services providing (e.g., calendar
functionality wherethe user owns its data), in terms of the SmartKYE architecture it is more
apropriate to speak of a client that has a contract with a data provider.

From a high-level perspective, we have the following interactions:

 The cockpits request a service from the OESP, e.g. a time series

 The cockpit authenticates itself directly at the authorization server since the OESP
only acts as a proxy for the cockpit. The OESP does not need to know the
credentials since the cockpit authenticates itself directly (e.g., the password, of the
cockpit for the resource server)

 The authorization servers issues an access token to the OESP on behalf of the
cockpit

 The OESP uses this token to request data from the resource server, which in turn
uses the token to control the access to its data

It is important to note that the token has a certain lifetime and, therefore, the authorization
and token exchange does not need to occur for every service request.

The most important difference from the usual operation of the OAuth protocol is that a
single request to the OESP may result in accessing multiple resource owners, which in turn
will potentially require the authentication with multiple authorization servers. While this is an

Resource
Server

Authorization
Server

OESP
(“Client”)

Cockpit
(“Resource Owner”)

Request
Service

Request
DataAuthenticates

Grants
Access

D2.1 Reference Architecture and Energy Services v1.0 60

overhead to a centralized solution, this operation happens rarely, because, as described
before, the access token can be cached by the OESP.

Figure 23 OAuth 2.0 Sequence Diagram

In Figure 23 we show a sequence diagram illustrating in more detail the interactions of the
OAuth 2.0 protocol.

The first parts show the steps necessary when the OESP does not have an access token
for the cockpit to the EMS yet and authorization is required:

1. The cockpit request a service from the OESP

2. The OESP maps the request to the correct authorization server associated with the
resource server from which data is requested and redirects the cockpit to the URL of
the authorization server

3. The cockpit authenticates directly with the authorization server without divulging any
secret information to the OESP

4. The authorization server provides an authorization code and redirects back to the
OESP

5. The cockpit provides the authorization code to the OESP

6. The OESP uses the authorization code to request an access token from the
authorization server

7. The authorization server provides the access token

8. The OESP requests data from the resource server while providing the access token

Cockpit OESP Auth EMS

Request
Service

Redirect

Authenticate

Provide Authorization Code

Authorization Code

Authorization Code

Access Token

Request Data (and provide access token)
Data

Response

Request
Service

Request Data (and provide access token)

Data

Response

1

D2.1 Reference Architecture and Energy Services v1.0 61

9. The resource server checks the token and if successfully validated returns the data

10. The OESP potentially processes the data or combines it with other information and
provides the response to the cockpit

After this process occurs once for a cockpit-EMS pair, the following requests are much
simpler and are depicted in the bottom part of the figure. The only difference in the
interactions compared to a system not using OAuth is that the OESP always provides the
access token to the EMS when requesting data.

While the figure depicts just the simple case of one EMS, the use of multiple EMS just
implies a loop of the sequence 1. And it is again important to note from a performance
viewpoint, that the sequence 2 (requesting a service and receiving data) can be repeated
multiple times without requiring a new authorization process.

In summary, the combination of SSL/TLS and OAuth 2.0 provides a flexible standards-
based security model for the federated SmartKYE architecture offering full flexibility for the
definition of access control to the stakeholders without requiring the transfer of credentials
to the OESP.

D2.1 Reference Architecture and Energy Services v1.0 62

6 Data Exchange Specification

6.1 Introduction

This section introduces the globally shared objects between many services of the OESP
platform and also the ones related specifically to a service, which were denominated as the
service-related objects. The XML schema definition (XSD) was used for their technical
description and is also attached in section 9.6.

6.2 Basic Objects

6.2.1 EntityType enumeration

Integration of heterogeneous energy sub-systems of the envisioned OESP can only be
efficiently done if types of its components are clearly separated. Every entity within the
OESP platform must have a type, which resulted in identification of numerous types an
entity can have e.g. a wind farm, a wind turbine, a point of light, a public lighting system,
etc. Since this is an enumeration of many types, section 9.6 contains the XSD where
currently identified types are listed.

6.2.2 MetricType enumeration

With introduction of the MetricServices a level of abstraction on the MetricType can be
noted. Therefore, this type is used for identifying metric of a timeseries and list of types that
can be provided by an entity. Since this is an enumeration of many types, the section 9.6
contains the XSD where currently identified types are listed. This listing is an extended
version of the metrics already identified in the SmartKYE deliverable document D1.2.

6.2.3 AttributeType enumeration

Since this is an enumeration of many types, section 9.6 contains the XSD where currently
identified types are listed.

6.2.4 Interval

A simple and commonly used object describes a time interval, defined only from start time
and the length of the interval. However, its value grows with introduction of the IntervalUnit
enumeration. As one can imagine, an interval value can be daily, monthly, weekly etc.
which can be expressed in seconds. In contrast, month and year durations can differ from
time to time, thus the IntervalUnit enumeration plays significant role in specifying how an
interval should be processed. Figure 24 depicts the basic objects discussed.

Figure 24 Globally used object for defining an interval

D2.1 Reference Architecture and Energy Services v1.0 63

6.2.5 SmartKyeException

Due to the distributed nature of the system, all functions of the OESP can indicate problems
using the used SmartKyeException exception type.

6.2.6 EntityFilter

Numerous entities are expected to be reachable through the OESP platform. A point where
components can be filtered needs to be considered. Once entities of interest are identified,
the filtering object can be passed to numerous services offered by the platform. In Figure 25
the filtering capabilities identified as needed by cockpits are listed.

Figure 25 Globally used object for entity filtering

The possibilities for the selection fall into three categories:

 First, entities can be selected by their ID or their relationship (having a certain
parent or ancestor) to others or being in a group.

 Second, entities can be selected based on their category (e.g., wind farm).

 Third, they can be selected based on their functionality, e.g.,, on which metrics or
attributes they offer.

The complete XSD description of this object can also be found in section 9.6.

6.2.7 EntityError

Any distributed architecture, as what SmartKYE is dealing with, will have multiple points of
failure. The same problem can be encountered for any request directed to the OESP
platform. As no limitations are considered for the entity filtering, one needs to be able to
address limitations of entities unable to deliver the data. This object is proposed to address
listings of the entities failing to deliver metrics, thus the aggregation step was not 100%
reliable. With that in mind, a cockpit designer can provide indications on the quality of the
data delivered, quantitatively and weighted. The same problem was also identified for the
entity attributes, which led to global usage of the object depicted in Figure 26.

D2.1 Reference Architecture and Energy Services v1.0 64

Figure 26 Listing of entities failing to deliver services

6.3 Service-related Objects

6.3.1 Attribute

Objects that are specifically related to the AttributeService and AttributeServiceSubscriber
are only value-oriented. The initial point of the attributes exchanged is the
BaseAttributeValue, which is used as abstraction object for attributes of different complexity
levels. Apart from the EntityFilter, AttributeType and EntityError object (discussed in section
6.2), Figure 27 depicts composition and relations of the objects exchanged.

Figure 27 Attribute service related objects

Although all the objects exchanged appear to be simple, (as mentioned) their complexity
lies within the extension of the BaseAttributeValue object. The lower left depicted object in
Figure 27 holds information of single values (or last updated value) and its occurrence for
an entity. The AttributeValueResult object holds numerous EntityAttributeValue objects, as
a single request to the platform can be made for multiple entities. Those who fail to deliver
their value, for any limitation of delivery, are listed within the EntityError list.

Timeseries of attributes are here treated differently, manly due to the structure of the
response. The EntityAttributeTimeseries holds values listed for a single AttributeType and

D2.1 Reference Architecture and Energy Services v1.0 65

identifies the entity that holds them. Further on, many different individual results are listed
within the AttributeTimeseriesResult object, where actual AttributeType is noted. All entities
that haven’t delivered their attributes will be listed in the EntityError list.

6.3.2 Entity

All entities of the system (independently if it’s a top level or child entity) are described by the
Entity object. The object holds a detailed description of the entity and the required structure
triggered creation of few additional objects to complete their description. Figure 28 depicts
the main object and related ones to this class.

Figure 28 Entity service related objects

As shown, all the entities have a unique ID, name and the basic object EntityType
(described in section 6.2). Textual description is proposed as short and long description
offered to the application developers to decide which type of description is required. If the
application allows investigation of an object, the main object holds indication for both
directions in hierarchy. The parent entity is described by its unique identification, while the
hasChildEntities Boolean value is used to indicate if an entity holds children. If the variable
is set to true, one may further investigate underlying entities by obtaining their listing
through the entity services described in the section 5.2.1.

The other two objects of Figure 28 are introduced due to the limited availability of certain
attributes and metrics. Attributes provided by an entity may be time-limited and if their
timeseries are requested from the Attribute services (described in the section 5.2.4), where
certain entities may not be able to deliver values in certain time frames. As some attributes
are writable, an indicator of acceptable modification (for a particular entity) is indicated by
the isWritable variable. If modifications of attribute’s value are registered by an entity,
hasHistory indicates their existence if only the last attribute value is fetched.

Similar approach is applied to the ProvidedMetric object. However, since the metric is a
sampled (double) value in point of time, it is considered not to be modifiable and therefore
the object holds only the information of timeframe where data is existent.

6.3.3 Message

The message object holds a general description of a message used by MCC to trigger
control commands in an EMS. In the Annex section of this document is included a first
version of the message schema to be used in the first release of the architecture. The main
attributes of a message are basically a messageType and the target entity of the message.
Any further detail can be reviewed in the message XML schema included in the Annex
section.

D2.1 Reference Architecture and Energy Services v1.0 66

6.3.4 Metric

Similarly to the AttributeService related objects, the metric services can be called to obtain
the last recorded value, or a timeseries of them. Identification of the MetricType and Interval
of interest are basic objects used for service invocations, while EntityError is used in their
response. All these objects are defined in the section 6.2, thus in this section service
related objects will be described. Figure 29 depicts composition of those objects.

Figure 29 Objects related to the Metric services

On the right side of the figure, one can see the objects holding a single value and entire
timeseries of Double data type. As mentioned, s single value is used for retrieving a last
sample of the entity providing the metric, thus obvious simplicity is noticeable. The
Timeseries object holds more complexity and the following listing describes the meaning of
the variables:

 entityID: List of entities if aggregation of the metrics is requested

 interval: Initial interval of the timeseries (from the section 6.2)

 intervalCount: Number of consecutive intervals – always greater than 0 (one
indicates only initial interval)

 exponent: Metrics can be delivered in different exponents from different entities,
e.g., kWh and MWh, thus platform will use exponent variable to execute proper
aggregation of provided metrics

 values: Values of the intervals

 validUntil: if an entity indicates reusability of the provided timeseries, the platform
can be enhanced to caching due the performance requirement

Finally, both object from the right side of the figure, are returned within the result objects.
Two resulting objects, from the left side of the figure, will hold the MetricType of the
timeseries and the entities that failed to respond in the EntityError listing.

6.3.5 Strategy

The StrategyService provides function of get and store for strategy. The results of strategy
are described as a StrategyAction object

D2.1 Reference Architecture and Energy Services v1.0 67

Figure 30 View of Strategy Service

Figure 30 shows the overview of StrategyAction. An object of StrategyAction contains one
request of municipality and its results. Following listing describes meaning of the variables:

 strategyActionID: unique ID of a StrategyAction

 entityIDs: List of entities involved in this StrategyAction

 sortByConstraintID: the KPI or metric, by which the results should be sorted

StrategyAction also contains three lists: StrategyGoal, StrategyConstraint and
StrategyResult. StrategyGoal and StrategyConstraint describe objectives and constraints of
municipality, meanwhile StrategyResult is the output.

StrategyGoals are the high level objectives of the municipality, which can be selected from
the KPIs (as defined in D1.2). For example: Increase energy consumption by 10 %. Multiple
objectives are also allowed, e.g. increasing energy production by 10%, while in parallel the
cost stays the same. The StrategyGoal must be selected from KPIs and consists of:

 goalD: unique ID of a StrategyGoal

 kpiID: ID of KPI from D1.2

D2.1 Reference Architecture and Energy Services v1.0 68

 x1, x2: two time windows in one KPI

 relation: relation of time series of x1, x2

 value: value of the KPI

 entityIDs: List of entities involved in this StrategyGoal

StrategyConstraints are the conditions in a scenario, which should also be satisfied.
Constraints can be chosen both from KPIs and Metrics.

StrategyResults are output of a request. The Strategy Service may provide several
strategies for one scenario, which means a StrategyAction could contain more than one
StrategyResults. A StrategyResult has one StrategyResultID to be identified and actionID to
show its StrategyAction. It contains two lists, StrategyKPIResult and StrategyMetricResult,
which are the results of KPI and Metric.

StrategyKPIResult consists of:

 kpiResultID: ID of KPI from D1.2

 x1, x2: two time windows in one KPI

 relation: relation of time series of x1, x2

 value: value of the KPI

 entityIDs: List of entities which involved in this StrategyKPIResult

StrategyMetricResult consists of:

 metricType: metric type from D1.2

 value: value of the metric

 unit: MetricUnit used by the metric

 entityIDs: List of entities which involved in this StrategyMetricResult

We have to point out that this is work in progress and only contains the draft view of the
objects to be exchanged. These will be analysed and specified in more detail in other
deliverables such as D5.1.

D2.1 Reference Architecture and Energy Services v1.0 69

7 Conclusions

In line with the 2020 objective of achieving a significant reduction of energy consumption
and CO2 emissions in Europe, the SmartKYE project is proposing an open service platform
to ease the integration of heterogeneous energy consuming and generating systems at
neighbourhood and city level. By doing so, fine-grained information can be acquired by the
platform and this has the potential to assist decision takers to take informed decisions. This
could be achieved via sophisticated tools that will allow a holistic view of city-wide energy
aspects while considering the municipality’s multi-angled goals e.g., towards energy
efficiency, CO2 emissions reduction, budget compliance, operational effectiveness etc.

This document presents a service architecture that enables the multiple heterogeneous
systems existing nowadays and in future smart cities to interact. The latest include EMSs
for smart buildings, public lighting systems, Electric Vehicles infrastructure, energy
production facilities, etc. By providing an integrated view on the smart grid city
infrastructure, potential energy inefficiencies could be identified and addressed in
compliance with the smart city’s goals. The latter could result in better and more
sustainable energy usage.

Easy to access and utilisation of energy-related data from powerful and intuitive user
applications (or cockpits) is expected to be an enabler of better energy decision taking
processes in neighbourhoods and cities. ICT technologies and standardization initiatives
play a key role; therefore the SmartKYE architecture proposed in this document has been
defined considering the latest trends in architecture definition methodologies, Service
Oriented Architecture (SOA) reference architectures and technologies.

In order to achieve this objective, along this document was presented the first release of the
SmartKYE reference architecture. This is the basic element to trigger all development
activities required not only to develop the core elements of the platform, but also those
elements required to support the integration of the different systems (EMS) in each of the
demonstration pilot sites in the project, namely Barcelona and Crete.

Although only a limited number of systems will be used for proof of concept purposes, the
main objective of SmartKYE is the development of an open platform that would ease the
integration of any kind of system in a neighbourhood or city. In this sense, the services and
data model envisioned to cover the SmartKYE platform requirements (and presented in this
document) reach certain levels of abstraction to simplify development of the consuming
applications.

Finally, it should be clear that the architecture proposed along this document is a first
version, as changes might be mandatory during the implementation of the functionalities
described here. In particular, the insights and knowledge obtained from the interaction with
the stakeholders during realisation and testing, as well as the planned trials performed in
order to validate the approach, will enable the release of a second and final version of the
SmartKYE architecture by the end of the project, which will integrate hands-on experiences.

D2.1 Reference Architecture and Energy Services v1.0 70

8 References and Acronyms

8.1 Acronyms

Acronyms List

ABB Architecture Building Block

AC Alternating current

ADF Architecture Development Framework

ADM Architecture Development Method

API Application Programming Interface

B2B Business-to-Business

BAS Building Automation Systems

BC Business Cockpit

BIM Building Information Modelling

BMS Building Management System

BO&C Building Optimization and Control

CEP Complex Event Processing

COTS Commercial Off-The-Shelf

DC Direct current

DER Distributed Energy Resources

DM Dissemination Manager

DR Demand Response

DSOs Distribution System Operator

EC European Commission

EGS EMS of Generator System

EISP Energy Information Service Provider

EMS Energy Management Systems

EPL EMS of Public Lighting

ESB Enterprise Service Bus

ESCOs Energy Service Company

ETL Extract-Transform-Load

ETS EMS of Traffic System

EU European Union

EV Electric vehicle

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HV High voltage

HVAC Heating ventilation and air conditioning

IaaS Information as a Service

D2.1 Reference Architecture and Energy Services v1.0 71

ICT Information and communication technologies

ICT4EE ICT for Energy Efficiency

IREEN The ICT Roadmap for Energy-Efficient Neighbourhoods

IT Information Technologies

J2EE Java 2 Platform Enterprise Edition

JMS Java Message Service

KPI Key Performance Indicator

MCC Monitoring and Control Cockpit

MMI Man Machine Interface

MUN Municipality

MV Medium voltage

NFRs Non-Functional Requirements

NOBEL
Neighbourhood Oriented Brokerage ELectricity and monitoring
system

OASIS
Organization for the Advancement of Structured Information
Standards

OESP Open Energy Service Platform

OMG Object Management Group

PHEV Plug-in Hybrid Electrical Vehicles

PLS Public lighting system

PPP Public-Private Partnership

PV Photovoltaic

QoS Quality of Service

RA Reference Architecture

RES Renewable Sources

REST Representational State Transfer

SCADA Supervisory Control and Data Acquisition System

SLA Service-Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TOGAF The Open Group Architecture Framework

TS Time Series

TS Data Time Series Data

UC Use Case

URL Uniform resource locator

WP Work packages

WSDL Web Services Description Language

D2.1 Reference Architecture and Energy Services v1.0 72

8.2 References

[1] S. Carosio, M. Hannus, C. Mastrodonato, E. Delponte, A. Cavallaro, F. Cricchio, S.
Karnouskos, J. Pereira-Carlos, C. B. Rodriguez, O. Nilsson, I. Seppä Pinto, T. Sasin, J.
Zach, H. van Beurden and T. Anderson, ICT Roadmap for Energy-Efficient Buildings --
Research and Actions, 2013.

[2] IREEN Consortium, “Deliverable 3.3.1 Strategy for European-scale innovation and
take-up: Drivers, Policies, Diagnostics & Gaps, Value chain & partnerships,” June
2013.

[3] SEMANCO - Semantic tools for carbon reduction in urban planning, “Workshop in
Barcelona. Analyzing and visualizing energy related data in our buildings, towns and
cities.,” 2013. [Online]. Available: http://semanco-visualization-
workshop.blogspot.com.es/.

[4] Oracle Public Sector, “Oracle’s Smart City Platform - Creating a Citywide Nervous
System,” 2012.

[5] BEAMS - Buildings Energy Advanced Management, “D2.2.1 Reference architecture
and principles,” 2012.

[6] A. Marqués, S. Karnouskos, P. J. Marrón, R. Sauter, E. Bekiaris and E. Kesidou,
“NOBEL- A Neighborhood Oriented Brokerage ELectricity and Monitoring System,” in
1st International ICST Conference on E-Energy, Athens, Greece, 14-15 October 2010.

[7] S. Karnouskos, M. Serrano, A. Marqués and P. J. Marrón, “Prosumer interactions for
Efficient Energy Management in SmartGrid neighborhoods,” in 2nd Workshop on
eeBuildings Data Models, CIB Conference W078-W012, European Commission,
Sophia Antipolis, France, 26-28 Oct 2011.

[8] P. Goncalves Da Silva, S. Karnouskos and D. Ilic, “Evaluation of the Scalability of an
Energy Market for Smart Grid,” in IEEE International Conference on Industrial
Informatics (INDIN), Bochum, Germany, 29-31 Jul 2013.

[9] D. Ilic, P. Goncalves Da Silva, S. Karnouskos and M. Griesemer, “An energy market for
trading electricity in smart grid neighbourhoods,” in IEEE International Conference on
Digital Ecosystem Technologies -- Complex Environment Engineering (IEEE DEST-
CEE), Campione d'Italia, Italy, Jun 2012.

[10] S. Karnouskos, P. Goncalves Da Silva and D. Ilic, “Energy Services for the Smart Grid
City,” in IEEE International Conference on Digital Ecosystem Technologies -- Complex
Environment Engineering (IEEE DEST-CEE), Campione d'Italia, Italy, Jun 2012.

[11] S. Karnouskos, “Communityware SmartGrid,” in 21st International Conference and
Exhibition on Electricity Distribution (CIRED 2011), Frankfurt, Germany, 6-9 Jun 2011.

[12] S. Karnouskos, A. Weidlich, J. Ringelstein, A. Dimeas, K. Kok, C. Warmer, P. Selzam,
S. Drenkard, N. Hatziargyriou and V. Lioliou, “Monitoring and Control for Energy
Efficiency in the Smart House,” in 1st International ICST Conference on E-Energy,
Athens Greece, 14-15 Oct 2010.

[13] K. Kok, S. Karnouskos, J. Ringelstein, A. Dimeas, A. Weidlich, C. Warmer, S.
Drenkard, N. Hatziargyriou and V. Lioliou, “Field-testing smart houses for a smart grid,”
in 21st International Conference and Exhibition on Electricity Distribution (CIRED
2011), Frankfurt, Germany, 6-9 Jun 2011.

[14] The Open Group, The Open Group Architecture Framework (TOGAF) Version 9, 2009.

D2.1 Reference Architecture and Energy Services v1.0 73

[15] The Open Group, SOA Reference Architecture, 2011.

[16] A. Josey, “TOGAF® Version 9.1 Enterprise Edition - An introduction,” 2011.

[17] The Open Group, “Using TOGAF to Define and Govern Service-Oriented
Architectures,” 2011.

[18] OASIS, OMG, and The Open Group, “Navigating the SOA Open Standards Landscape
Around Architecture, Joint White Paper from OASIS, OMG, and The Open Group,”
2009.

[19] D. Hawley, “The Open Group Architecture Principles,” The Open Group Internal
Architecture Board, 2008.

[20] FMC Modelling, “FMC Modelling,” [Online]. Available: www.fmc-modeling.org.

[21] Internet Engineering Task Force (IETF), The OAuth 2.0 Authorization Framework,
2012.

[22] IREEN Consortium, “Deliverable 2.2.1: Report on state-of-the-art (International) ICT-
based innovation projects,” December 2012.

[23] S. Karnouskos, P. Goncalves Da Silva and D. Ilic, “Developing a Web Application for
Monitoring and Management of Smart Grid Neighborhoods,” in IEEE 11th International
Conference on Industrial Informatics (INDIN, Bochum, Germany, 2013.

D2.1 Reference Architecture and Energy Services v1.0 74

9 Annex

9.1 SmartKYE pilot sites EMS – PV/Wind Power EMS

9.1.1 PV/Wind Power Plant - Crete

The wind power plant EMS system already running in Crete (called More Care EMS) is
attached to a local SCADA system (or DMS system), thus it has two major types of data
that will be available for the SmartKYE platform. The two main types of data are:

 Data coming from the SCADA

 Results of EMS algorithms

The following additional data will be also provided also by the More Care EMS:

 Weather Forecasts

 Specific Crete public buildings

Every minute More Care receives via FTP the records from the main SCADA of Crete. The
type of data coming from the SCADA is summarized in the following table

Table 13 PV/Wind power plant data available - Crete

Type Online Data Historical

Data

Substations
(HV/MV)

Active Power 1min Hourly data

Reactive Power 1min Hourly data

Current 1min Hourly data

Voltage 1min Hourly data

Wind Farms Active Power 1min Hourly data

Reactive Power 1min Hourly data

Wind Speed 1min Hourly data

Wind Direction 1min Hourly data

Curtailment set-
point

Event Event

Power Station Active Power 1min Hourly data

Active Power
(Net)*

1min Hourly data

Reactive Power 1min Hourly data

Current 1min Hourly data

Voltage 1min Hourly data

PV Active Power 5min Hourly data

Reactive Power 5min Hourly data

General Frequency 5min Hourly data

 Total Load 5min Hourly data

 Total Production 5min Hourly data

 Total Load per 5min Hourly data

D2.1 Reference Architecture and Energy Services v1.0 75

region

 Total RES
production

5min Hourly data

 Penetration 5min Hourly data

*Net production is the power injected into the grid. Each generator provides power also to
auxiliary systems in the station.

More Care receives also weather forecasts from the SKIRON system. The weather
forecasts data include:

Table 14 PV/Wind power plant data available (weather data) - Crete

Type Interval Horizon Values

Temperature 1h 5d Schedule of 96 values

Pressure 1h 5d Schedule of 96 values

Wind Speed 1h 5d Schedule of 96 values

Wind Direction 1h 5d Schedule of 96 values

Cloud Index 1h 5d Schedule of 96 values

Irradiation 1h 5d Schedule of 96 values

Humidity 1h 5d Schedule of 96 values

Finally, the MORE CARE system aims to assist the operators of island systems by
proposing optimal operating scenarios for the various power units, as well as the various
actions needed to avoid dangerous situations, which might result from a poor prediction of
load or weather or pre-selected disturbances. The insurance of increased security and
reliability of the system will allow maximization of renewable penetration. As previously
indicated, the additional set of data provided by this EMS in Crete is detailed in the
following table:

Table 15 PV/Wind power plant data available (algorithms results) - Crete

Type Interval Horizon Values

Short Term Load Forecast 20min 8h Schedule of 24 values

Economic Dispatch 20min Next time step

Short Term Wind Forecast 20min 8h Schedule of 24 values

Short Term Unit Commitment 20min 8h Schedule of 24 values

Stochastic Load Flow 20min Next time step

Long Term Load Forecast 1h 24/48h Schedule of 24/48 values

Long Term Wind Forecast 1h 24/48h Schedule of 24/48 values

Long Term Unit Commitment 1h 24/48h Schedule of 24/48 values

9.1.2 PV/Wind Power Plant - Barcelona

The PV/Wind EMS available in Barcelona is simpler than the one previously described,
although it still provides some valuable information for SmartKYE project. The system is
based on the following components:

D2.1 Reference Architecture and Energy Services v1.0 76

 Weather station: Provides information on wind speed.

 Windmill tachometer provides information on turbine speed revolution.

 Inverter provides information on:
o DC voltage: voltage from the windmill to the inverter.
o DC current.
o AC power: power delivered to the grid.

All this information is transmitted to a sheeva plug (embedded PC), which is responsible for
sending the data to a web platform every minute. The following data (and services)
provided by this EMS will be available in SmartKYE project:

Physical elements:
1. Power inverters:

a. Information:

 Id.

 Operational status

 Configuration parameters.

 Voltage DC side.

 Current DC side.

 Power DC side.

 Network frequency

 Injected power.

 Current at each phase.

 Daily production.

 Total production.

 Alarms.

b. Services:

 Set configuration parameters.

2. Weather station:

a. Information:

 Temperature.

 Pressure.

 Wind speed.

 Maximum recent wind speed.

 Average wind speed.

 Humidity.

Logical Elements
1. Maximum speed control.

a. Information:

 Windmill rpm.

 Configuration parameters.

b. Services:

 Set configuration parameters.

 Stops wind turbine.

2. Voltage control.

b. Information:

 Windmill voltage output.

D2.1 Reference Architecture and Energy Services v1.0 77

 Configuration parameters.

c. Services:

 Set configuration parameters.

 Stops wind turbine.

9.2 SmartKYE pilot sites EMS – Public buildings

9.2.1 Public buildings EMS - Crete

In the case of Crete, energy consumption data from several public buildings will be provided
to SmartKYE platform by the More Care EMS system. The data available is summarized in
the following table:

Table 16 Public buildings EMS - Crete

Type Interval

Total Consumption 1m

Consumption per feeder or device 1m

Voltage 1m

Frequency 1m

9.2.2 Public buildings EMS - Barcelona

In the case of Barcelona, data from a building and an office area from this building will be
provided to SmartKYE platform. The data available is summarized in the following table:

Table 17 Public buildings EMS - Crete

Type Interval

Building data:

Solar radiation 10min

Outside temperature 10min

Building HVAC main valves 10min

Office area:

Office global energy consumption
(disaggregated in lighting and power
plugs consumption)

10min

Ambient parameters (temperature,
brightness and humidity)

10min

Disaggregated power consumption of
electronic equipment

10min

Energy price 10min

Energy mix 10min

D2.1 Reference Architecture and Energy Services v1.0 78

9.3 SmartKYE pilot sites EMS – Public Lighting System

For the public lighting EMS to be integrated with the SmartKYE platform, the following data
and services will be provided:

1. Segment Controller

a. Information

 Configuration parameters.

 Communication Status.

 Operational status.

 Line Activation status.

 Communication status with Flow Regulator (RF).

 RF operation status.

 List of LPs and LPCs.

 Operating status of the LPCs.

 SC alarms.

 RF alarms.

 Electrical parameters (V, I, cos φ).

 Total power and power for each line.

 Maximum power.

 Relative power (Total Power / Maximum Power).

 Power consumption (Active and reactive energy).

b. Services:

 Set Configuration Parameters.

 Activation of the lines.

2. Point of light Controller

a. Information

 Configuration parameters.

 Communication Status.

 Operational status.

 Control Mode.

 Activation Status.

 LPC alarms.

 Electrical parameters (V, I, cos φ).

 Power.

 Power consumption (Active and reactive energy).

b. Services:

 Set Control mode.

 Activation.

3. Points of light

a. Information

 Identifier.

 Short Description.

 V.

 Power.

D2.1 Reference Architecture and Energy Services v1.0 79

 V Evolution.

 Power Evolution.

 Consumption Evolution.

 Operational status.

 Control Mode.

 Alarms.

 Historical status.

 Alarm History.

 Activation Status.

 Actual Desired Lighting Level

 Desired Lighting Level.

 Current Lighting level.

 Activation Hours.

 Number of activations.

b. Services:

 Set Control mode.

 Enable Lighting Level.

4. Group of Points of light

a. Information

 Identifier.

 Short Description.

 Long description.

 List of LPs.

 V mean.

 Power.

 Maximum power.

 Relative power.

 V mean Evolution.

 Power Evolution.

 Consumption Evolution.

 LPCs operational status.

 Geographic Polygon surfaces.

 Activation Status.

 Control Mode.

 Actual Desired Lighting Level.

 Desired Lighting Level.

 Current Lighting Level.

b. Services:

 Set Control mode.

 Enable Lighting Level.

9.4 SmartKYE pilot sites EMS – Electric Vehicle Infrastructure

In the case of the EV EMS, the following information will be available:

 Information

D2.1 Reference Architecture and Energy Services v1.0 80

o Power consumption of the latest 15’ period
o User Id of the owner of the car

 Services:

o Retrieve current data for plug X
o Retrieve historical data of plug X from date D1 to date D2

9.5 SmartKYE architecture building blocks and capabilities mapping

The following table provides the result of the analysis performed following the Open Group
SOA RA. In this table the SmartKYE architecture building blocks and capabilities are
mapped.

D2.1 Reference Architecture and Energy Services v1.0 81

Table 18 SmartKYE SOA RA – Capabilities and ABB mapping

SOA RA
Layer

Capability category
Building Block

Name
Supported

Capabilities
Comments

Service
Layer

Service definition Service 1

This ABB represents a published service that offers
certain functionalities that business performs to
achieve a business outcome or a milestone. Typically,
a service is published to the Service Repository ABB in
the Governance Layer during design time for search
and re-use and the Service Registry ABB in the Gov-
ernance Layer during runtime for service virtualization.
A service is typically represented in a standard de-
scription language (e.g., WSDL) describing its acces-
sible interfaces (e.g., function or method signatures).

 Service Runtime
Enablement

Service con-
tainer

3

5

6

Governance
Layer: Service
registry 3

The Service Registry ABB in the Governance Layer
supports the storage of and access to bindings at
runtime to services hosted in the Service Contain-
er/Gateway ABB. It manages service versioning allow-
ing the appropriate service to be picked.

Access control
QoS Layer:
Policy Manager

12

Consumer services Client (channel) 2

This ABB interacts with the Presentation Controller
ABB to use the underlying services, integrating the
consumer of services supported by the SOA RA. It is
the element in the SOA which the consumer interacts
with. As such, it provides the point interaction for the
consumer. The key responsibilities include dealing with
the nature of interaction that the client has with the
consumer.

D2.1 Reference Architecture and Energy Services v1.0 82

Consumer
Layer

Presentation
services

Presentation
adapter

4
This ABB is responsible for integrating the client with
the rest of the Consumer Layer.

Presentation
controller

3
This ABB is responsible for handling the orchestration,
decomposition, and composition of the view rendered
by the client.

6

7

Presentation
flow manager

5

This ABB is responsible for supporting navigation and
control flow in the Consumer Layer. It is an important
part in the assemblage of a view component to send
back and render in the client.

Composite View 3

This ABB is responsible for assembling data received
from various services and creates a composite view
which is orchestrated and then passed on to the client
for rendering.

Consumer/User
Profile Manager

4

This ABB is responsible for supporting the personaliza-
tion of the interface and the presentation to a particular
consumer’s wants and needs. It will be used both by
the Client ABB and Presentation Controller ABB. It can
be used for controlling individual consumer features or
the creation of profiles based on roles.

6
I would support this in smart key to enable/restrict dif-
ferent profiles to access specific services

Personalization
Manager

6

Backend Integration

Integration
Layer:

8
Integration con-
troller

Integration
Layer: 9

Data trans-

D2.1 Reference Architecture and Energy Services v1.0 83

former

Caching and Stream-
ing Content

Cache
10

11

Security and Privacy

Integration
Layer:

12
12 deals with providing authentication/authorization
capabilities, while 13 with filtering to control access
and 14 to monitor the usage of consumer layer com-
ponents. Policy manager 13, 14

Integration
Layer

Communication,
Service Interaction

and Integration

Integration
Controller/ In-
tegration
Gateway

1 This ABB serves as an entry point to this layer. This
ABB is thus responsible for interfacing with other ABBs
in this layer and managing the interaction flow among
the ABBs in this layer.

2

5

Adapter 1, 2, 3, 6, 7

This ABB is responsible for the interfacing/connectivity
of SOA RA layers of a solution to external systems and
components and taking a call (message) to the end-
point.

Mediator 1-7

This ABB is responsible for handling the service re-
quest/response interaction. It also supports the trans-
formation between message formats, conversion of
protocols, and routing of service call/messages to the
service provider. It uses the Data Transformer ABB
and optionally the Semantic Transformer ABB for the
transformations

Router 5

This ABB is responsible to route messages between
service consumer/requestor and service provider in-
cluding those based on both content-based routing,
straight through message passing

Quality of Service

Transaction
Manager

13
This ABB manages transactions and encapsulates
transaction handling

Exception
Handler

14

This ABB is responsible for handling system excep-
tions raised during service invocation and message
passing. System exceptions are caused due to soft-
ware or hardware errors

D2.1 Reference Architecture and Energy Services v1.0 84

Security

Quality of Ser-
vice Layer: Ac-
cess Controller

15

QoS Layer Security Management

Security Man-
ager

9

 OAuth + SSL

10

11

Identity, Ac-
cess, and Enti-
tlement Man-
ager

13

Data and In-
formation Pro-
tector

15

Access Con-
troller

21

Information Service

Information
Services Gate-
way

1

Data Aggrega-
tor

3

This ABB is responsible for efficiently joining infor-
mation – for example, structured and unstructured data
– from multiple sources without creating data redun-
dancy to help form a unified data view/model.
This could be required for example for some services
in the OESP.

Hierarchy and
Relationship
Manager

5
This ABB is responsible for managing the data hierar-
chies, groupings, relationships such as parent-child re-
lationships, and relationships between enterprise data.

Data Repre-
sentation Man-
ager

11

This ABB is responsible for handling representation of
data from various data sources in a unified data format
and for creation of unified views of data. In other
words, this ABB intends to hide various data sources

D2.1 Reference Architecture and Energy Services v1.0 85

Information
Layer

and present data in uniform formats to other ABBs.

Data Sourcing
Manager

11

This ABB is responsible for enabling access to differ-
ent data sources using different protocols. It provides
unified access to data in files, databases, etc. It uses
an Adapter ABB from the Integration Layer to provide
the ability to integrate with data sources in different so-
lution platforms (external data sources).
Examples may be relational sources (e.g., DB2, Ora-
cle, or SQL Server databases), other structured data
(e.g., Excel .CSV, web service request responses in
XML format, and hierarchical stores on mainframes
such as IMS), as well as unstructured data stores
(such as images and documents). It manages interac-
tions with the data sources in the Solution Platform and
other SOA RA layers, but it is not responsible for ad-
dressing data and protocol transformation.

Data Cache 15

This ABB is responsible for the caching of data in sup-
port of the data virtualization/information services ca-
pability. It enables addressing variations in temporal
availability of data as well as improvement of perfor-
mance. The variance in temporal availability of data is
an issue associated with different data sources having
different schedules for data being available; for exam-
ple, one data source could be a time-based file feed,
the other a mainframe batch program, and the third a
real-time relational database. In such a scenario, for
the consistent update and availability of data, it is use-
ful to be able to cache it in some form.

Integration
Layer: Data
Transformer

12

D2.1 Reference Architecture and Energy Services v1.0 86

Data Consoli-
dator

9

This ABB is responsible for extracting relevant infor-
mation from sources, transforming the information into
the appropriate integrated form, and loading the infor-
mation into the target repository. This ABB supports
Extract-Transform-Load (ETL) from one or more
source systems into a target system.

Information Security
and Protection

Quality of Ser-
vice Layer: Ac-
cess Controller

19

Quality of Ser-
vice Layer: Da-
ta-Driven Ac-
cess Controller

20

Analytics Visu-
alization En-
gine

24

Governance
Layer

 SOA Metadata Stor-
age and Management

Service Re-
pository

8 This ABB integrates with the Service Performance
Manager ABB to support the runtime information col-
lection and storage in order for users to evaluate ser-
vice performance.
It acts as a design-time repository to store and locate
metadata about services, including descriptions of the
service contract, information about the QoS policies
and security, versioning information, and runtime in-
formation such as end-points.

9

13

14

D2.1 Reference Architecture and Energy Services v1.0 87

Service Regis-
try

13-14

The ABB is responsible for allowing advertising and
discovery of available services and supports the
runtime binding of services and service virtualization.
Think of this ABB as a runtime service repository. Ser-
vices are available to the solution as well as govern-
ance processes. Advertisement of services should be
governed. It contains metadata about services, includ-
ing descriptions of the service contract, information
about the QoS policies and security, versioning infor-
mation, and runtime information such as end-points.
This ABB may leverage the design-time Service Re-
pository ABB to fetch metadata about services to fulfil
the runtime needs of SOA such as dynamic/runtime
binding and service virtualization. Standards for regis-
tries include UDDI.

Management
Change Control
Manager

31

D2.1 Reference Architecture and Energy Services v1.0
 88

9.6 Exchanged Objects (XSD)

This section holds the XML Schema Definitions of the objects consumed by the energy
services

9.6.1 Basic Objects

entityType – types of entities existent within the OESP platform

<xs:simpleType name="entityType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="BUILDING"/>
 <xs:enumeration value="BUILDING_EMS"/>
 <xs:enumeration value="BUILDING_HVAC_CONTROL"/>
 <xs:enumeration value="BUILDING_LIGHTING_CONTROL"/>
 <xs:enumeration value="BUILDING_OFFICE"/>
 <xs:enumeration value="ELMETER"/>
 <xs:enumeration value="EV_CHARGING_STATION"/>
 <xs:enumeration value="EV_CHARGING_STATION_CONTROL_ROOM"/>
 <xs:enumeration value="POINT_OF_LIGHT"/>
 <xs:enumeration value="PUBLIC_LIGHTING_CABINET"/>
 <xs:enumeration value="PUBLIC_LIGHTING_CONTROL_ROOM"/>
 <xs:enumeration value="PV_INVERTER"/>
 <xs:enumeration value="PV_PANEL"/>
 <xs:enumeration value="PV_POWER_PLANT"/>
 <xs:enumeration value="SEGMENT_CONTROLLER"/>
 <xs:enumeration value="UNSPECIFIED"/>
 <xs:enumeration value="WINDFARM"/>
 <xs:enumeration value="WINDMILL"/>
 </xs:restriction>
 </xs:simpleType>

metricType

<xs:simpleType name="metricType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ENTITY_COUNT"/>
 <xs:enumeration value="ENTITIES_USED"/>
 <xs:enumeration value="ENERGY_CONSUMPTION"/>
 <xs:enumeration value="ENERGY_PRODUCTION"/>
 <xs:enumeration value="POTENTIAL_ENERGY_PRODUCTION"/>
 <xs:enumeration value="ENERGY_CONSUMPTION_FORECAST"/>
 <xs:enumeration value="ENERGY_PRODUCTION_FORECAST"/>
 <xs:enumeration value="ENERGY_MANAGED"/>
 <xs:enumeration value="ENERGY_MANAGED_REQUESTED"/>
 <xs:enumeration value="ENERGY_PRODUCTION_CURTAILMENT_FORECAST"/>
 <xs:enumeration value="ENERGY_PRODUCTION_CURTAILMENT"/>
 <xs:enumeration value="ENERGY_CONVERSION_EFFICIENCY"/>
 <xs:enumeration value="STATE_OF_CHARGE"/>
 <xs:enumeration value="POTENTIAL_CAPACITY_OF_POWER_PRODUCTION"/>
 <xs:enumeration value="STORAGE_CAPACITY"/>
 <xs:enumeration value="MAX_PEAK_POWER_DEMAND"/>
 <xs:enumeration value="ACTIVE_POWER"/>
 <xs:enumeration value="REACTIVE_POWER"/>
 <xs:enumeration value="VOLTAGE"/>
 <xs:enumeration value="CURRENT"/>
 <xs:enumeration value="POWER_FACTOR"/>
 <xs:enumeration value="AC_FREQUENCY"/>
 <xs:enumeration value="OPERATIONAL_COST"/>
 <xs:enumeration value="ENERGY_PRICE_PER_KWH"/>
 <xs:enumeration value="ENERGY_COST"/>
 <xs:enumeration value="CO2_EMISSIONS"/>
 <xs:enumeration value="TEMPERATURE"/>
 <xs:enumeration value="ATHMOSPHERIC_PRESSURE"/>
 <xs:enumeration value="WIND_SPEED"/>

D2.1 Reference Architecture and Energy Services v1.0 89

 <xs:enumeration value="WIND_DIRECTION"/>
 <xs:enumeration value="CLOUD_INDEX"/>
 <xs:enumeration value="HUMIDITY"/>
 <xs:enumeration value="ENERGY"/>
 <xs:enumeration value="LOAD"/>
 <xs:enumeration value="PRODUCTION"/>
 <xs:enumeration value="PENETRATION"/>
 <xs:enumeration value="ECONOMIC_DISPATCH"/>
 </xs:restriction>
 </xs:simpleType>

predefinedProcessingGraphs – default KPIs offered by the OESP platform

<xs:simpleType name="predefinedProcessingGraphs">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ASSET_PENETRATION_COMPARISON"/>
 <xs:enumeration value="ENERGY_MANAGED_ACHIEVED"/>
 <xs:enumeration value="ENERGY_PRODUCTION_COMPARISON"/>
 <xs:enumeration value="ENERGY_PENETRATION_COMPARISON"/>
 <xs:enumeration value="ENERGY_PRODUCTION_CURTAILMENT"/>
 <xs:enumeration value="ENERGY_PRODUCTION_PENETRATION"/>
 <xs:enumeration value="ENERGY_PRODUCTION_RATIO"/>
 <xs:enumeration value="ENERGY_EXCHANGE"/>
 <xs:enumeration value="ENERGY_SURPLUS"/>
 <xs:enumeration value="FORECAST_ENERGY_CONSUMPTION_ACCURACY"/>
 <xs:enumeration value="FORECAST_ENERGY_PRODUCTION_ACCURACY"/>
 <xs:enumeration value="INVESTMENT_RATION_FROM_AVAILABLE_INVESTMENTS"/>
 <xs:enumeration value="POTENTIAL_ENERGY_FLEXIBILITY"/>
 <xs:enumeration value="POTENTIAL_ENERGY_PRODUCTION_FROM_MAX"/>
 <xs:enumeration value="ASSET_COUNT_DIFFERENCE"/>
 <xs:enumeration value="ASSET_PENETRATION_CHANGE"/>
 <xs:enumeration value="CONSUMPTION_FORECAST_ACCURACY_CHANGE"/>
 <xs:enumeration value="CURTAILED_ENERGY_DIFFERENCE"/>
 <xs:enumeration value="EMISSIONS_CHANGE"/>
 <xs:enumeration value="EMISSIONS_DIFFERENCE"/>
 <xs:enumeration value="ENERGY_CONSUMPTION_CHANGE"/>
 <xs:enumeration value="ENERGY_CONSUMPTION_DIFFERENCE"/>
 <xs:enumeration value="ENERGY_CONSUMPTION_FLEXIBILITY_CHANGE"/>
 <xs:enumeration value="ENERGY_COST_CHANGE"/>
 <xs:enumeration value="ENERGY_COST_DIFFERENCE"/>
 <xs:enumeration value="ENERGY_EXCHANGED_DIFFERENCE"/>
 <xs:enumeration value="ENERGY_MANAGEMENT_ACHIEVEMENT_CHANGE"/>
 <xs:enumeration value="ENERGY_MANAGEMENT_ACHIEVEMENT_DIFFERENCE"/>
 <xs:enumeration value="ENERGY_MANAGEMENT_DIFFERENCE"/>
 <xs:enumeration value="ENERGY_PRODUCTION_CHANGE"/>
 <xs:enumeration value="ENERGY_PRODUCTION_DIFFERENCE"/>
 <xs:enumeration value="ENERGY_PRODUCTION_RATIO_DIFFERENCE"/>
 <xs:enumeration value="ENTITY_USAGE_DIFFERENCE"/>
 <xs:enumeration value="GOAL_ACHIEVEMENT_CHANGE"/>
 <xs:enumeration value="INVESTMENT_CHANGE"/>
 <xs:enumeration value="OPERATIONAL_COST_CHANGE"/>
 <xs:enumeration value="OVERALL_STATE_OF_CHARGE_CHANGE"/>
 <xs:enumeration value="POTENTIAL_ENERGY_FLEXIBILITY_CHANGE"/>
 <xs:enumeration value="POTENTIAL_ENERGY_PRODUCTION_CHANGE"/>
 <xs:enumeration value="PRODUCTION_FORECAST_ACCURACY_CHANGE"/>
 <xs:enumeration value="PRODUCTION_FROM_MAXIMUM_POTENTIAL_CHANGE"/>
 <xs:enumeration value="PRODUCTION_PENETRATION_CHANGE"/>
 <xs:enumeration value="TOTAL_ENERGY_PREDICTABILITY_CHANGE"/>
 <xs:enumeration value="WEIGHTED_ENERGY_EFFICIENCY_DIFFERENCE"/>
 <xs:enumeration value="WEIGHTED_ENERGY_PRICE_DIFFERENCE"/>
 </xs:restriction>
 </xs:simpleType>

attributeType – envisioned attributes for the known SmartKYE entities

 <xs:simpleType name="attributeType">

D2.1 Reference Architecture and Energy Services v1.0 90

 <xs:restriction base="xs:string">
 <xs:enumeration value="GEO_LOCATION"/>
 <xs:enumeration value="POSTAL_ADDRESS"/>
 <xs:enumeration value="CONNECTED_ON_GRID"/>
 <xs:enumeration value="ELECTRICAL_MEASURES"/>
 <xs:enumeration value="CONNECTED_TO_PHASE"/>
 <xs:enumeration value="SWITCHED"/>
 <xs:enumeration value="DIMMING_VALUE"/>
 <xs:enumeration value="MEASUREMENT_DEVICE"/>
 <xs:enumeration value="WORKING_MODE"/>
 <xs:enumeration value="BUILDING_PROPERTIES"/>
 </xs:restriction>
 </xs:simpleType>

entityFilter – OESP filter for entities of interest

<xs:complexType name="entityFilter">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entities"
nillable="true" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityParents"
nillable="true" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityAncestors"
nillable="true" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityGroups"
nillable="true" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityTypes"
nillable="true" type="tns:entityType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="providedMetricTypes"
nillable="true" type="tns:metricType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0"
name="providedAttributeTypes" nillable="true" type="tns:attributeType"/>
 </xs:sequence>
 </xs:complexType>

entityError

 <xs:complexType name="entityError">
 <xs:sequence>
 <xs:element minOccurs="0" name="entityID" type="xs:string"/>
 <xs:element minOccurs="0" name="error" type="tns:smartkyeException"/>
 </xs:sequence>
 </xs:complexType>

intervalUnit

 <xs:complexType name="intervalUnit">
 <xs:restriction base="xs:string">
 <xs:enumeration value="SECOND"/>
 <xs:enumeration value="MONTH"/>
 <xs:enumeration value="YEAR"/>
 </xs:restriction>
 </xs:complexType>

smartkyeException

 <xs:complexType name="smartkyeException">
 <xs:complexContent>
 <xs:extension base="tns:exception">
 <xs:sequence>
 <xs:element minOccurs="0" name="description" type="xs:string"/>
 <xs:element minOccurs="0" name="type" type="tns:smartkyeExceptionType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

D2.1 Reference Architecture and Energy Services v1.0 91

smartkyeExceptionType

<xs:simpleType name="smartkyeExceptionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="BASE"/>
 </xs:restriction>
 </xs:simpleType>

9.6.2 Service Related Objects

9.6.2.1 Entity
 <xs:complexType name="entityProvidedMetric">
 <xs:sequence>
 <xs:element minOccurs="0" name="entityID" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="providedMetrics"
nillable="true" type="tns:providedMetric"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="providedMetric">
 <xs:sequence>
 <xs:element minOccurs="0" name="metricType" type="tns:metricType"/>
 <xs:element minOccurs="0" name="dataAvailableFrom" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="dataAvailableTo" type="xs:dateTime"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="entity">
 <xs:sequence>
 <xs:element minOccurs="0" name="id" type="xs:string"/>
 <xs:element minOccurs="0" name="type" type="tns:entityType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="metrics"
nillable="true" type="tns:providedMetric"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="attributes"
nillable="true" type="tns:providedAttribute"/>
 <xs:element minOccurs="0" name="parentEntityID" type="xs:string"/>
 <xs:element name="hasChildEntities" type="xs:boolean"/>
 <xs:element minOccurs="0" name="entityName" type="xs:string"/>
 <xs:element minOccurs="0" name="entityShotDescription" type="xs:string"/>
 <xs:element minOccurs="0" name="entityLongDescription" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="providedAttribute">
 <xs:sequence>
 <xs:element minOccurs="0" name="type" type="tns:attributeType"/>
 <xs:element minOccurs="0" name="dataAvailableFrom" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="dataAvailableTo" type="xs:dateTime"/>
 <xs:element name="isWriteable" type="xs:boolean"/>
 <xs:element name="hasHistory" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>

9.6.2.2 Metric

entityMetricValue

<xs:complexType name="entityMetricValue">
 <xs:sequence>
 <xs:element minOccurs="0" name="entityID" type="xs:string"/>
 <xs:element minOccurs="0" name="timestamp" type="xs:dateTime"/>
 <xs:element name="value" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>

D2.1 Reference Architecture and Energy Services v1.0 92

metricValueResult

<xs:complexType name="metricValueResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="metricType" type="tns:metricType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityMetricValues"
nillable="true" type="tns:entityMetricValue"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityErrors"
nillable="true" type="tns:entityError"/>
 </xs:sequence>
 </xs:complexType>

entityMetricTimeseries

 <xs:complexType name="entityMetricTimeseries">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityIDs"
nillable="true" type="xs:string"/>
 <xs:element minOccurs="0" name="interval" type="tns:interval"/>
 <xs:element name="intervalCount" type="xs:int"/>
 <xs:element name="exponent" type="xs:int"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="values"
nillable="true" type="xs:double"/>
 <xs:element minOccurs="0" name="validUntil" type="xs:dateTime"/>
 </xs:sequence>
 </xs:complexType>

metricTimeseriesResult

<xs:complexType name="metricTimeseriesResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="metricType" type="tns:metricType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0"
name="entityMetricTimeseries" nillable="true" type="tns:entityMetricTimeseries"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityErrors"
nillable="true" type="tns:entityError"/>
 </xs:sequence>
 </xs:complexType>

9.6.2.3 Attribute

entityAttributeValue

 <xs:complexType name="entityAttributeValue">
 <xs:sequence>
 <xs:element minOccurs="0" name="entityId" type="xs:string"/>
 <xs:element minOccurs="0" name="timestamp" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="value" type="tns:baseAttributeValue"/>
 </xs:sequence>
 </xs:complexType>

attributeValueResult – Resulting value for attribute timeseries

<xs:complexType name="attributeValueResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="attributeType" type="tns:attributeType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityAttributeValues"
nillable="true" type="tns:entityAttributeValue"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityErrors"
nillable="true" type="tns:entityError"/>
 </xs:sequence>
 </xs:complexType>

D2.1 Reference Architecture and Energy Services v1.0 93

attributeReading

 <xs:complexType name="attributeReading">
 <xs:sequence>
 <xs:element minOccurs="0" name="timestamp" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="value" type="tns:baseAttributeValue"/>
 </xs:sequence>
 </xs:complexType>

entityAttributeTimeseries

<xs:complexType name="entityAttributeTimeseries">
 <xs:sequence>
 <xs:element minOccurs="0" name="entityID" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="attributeReadings"
nillable="true" type="tns:attributeReading"/>
 </xs:sequence>
 </xs:complexType>

attributeTimeseriesResult

 <xs:complexType name="attributeTimeseriesResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="attributeType" type="tns:attributeType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0"
name="entityAttributeTimeseries" nillable="true"
type="tns:entityAttributeTimeseries"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityErrors"
nillable="true" type="tns:entityError"/>
 </xs:sequence>
 </xs:complexType>

9.6.2.4 CEP

processingGraphParameter

<xs:complexType name="processingGraphParameter">
 <xs:sequence>
 <xs:element minOccurs="0" name="name" type="xs:string"/>
 <xs:element minOccurs="0" name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

cepMetricTimeseriesResult

<xs:complexType name="cepMetricTimeseriesResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="processingGraphHandle" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0"
name="entityMetricTimeseries" nillable="true" type="tns:entityMetricTimeseries"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityErrors"
nillable="true" type="tns:entityError"/>
 </xs:sequence>
 </xs:complexType>

entityMetricTimeseries

<xs:complexType name="entityMetricTimeseries">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entityIDs"
nillable="true" type="xs:string"/>
 <xs:element minOccurs="0" name="interval" type="tns:interval"/>

D2.1 Reference Architecture and Energy Services v1.0 94

 <xs:element name="intervalCount" type="xs:int"/>
 <xs:element name="exponent" type="xs:int"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="values"
nillable="true" type="xs:double"/>
 <xs:element minOccurs="0" name="validUntil" type="xs:dateTime"/>
 </xs:sequence>
 </xs:complexType>

processingGraph

 <xs:complexType name="processingGraph">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="components"
nillable="true" type="tns:processingGraphComponent"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="connections"
nillable="true" type="tns:processingGraphConnection"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="parameters"
nillable="true" type="tns:processingGraphUnresolvedParameter"/>
 </xs:sequence>
 </xs:complexType>

processingGraphComponent

<xs:complexType name="processingGraphComponent">
 <xs:sequence>
 <xs:element minOccurs="0" name="name" type="xs:string"/>
 <xs:element minOccurs="0" name="type" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="inPorts"
nillable="true" type="tns:processingGraphPort"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="outPorts"
nillable="true" type="tns:processingGraphPort"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="resolvedParameters"
nillable="true" type="tns:processingGraphParameter"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="boundParameters"
nillable="true" type="tns:processingGraphParameterBinding"/>
 </xs:sequence>
 </xs:complexType>

processingGraphPort

<xs:complexType name="processingGraphPort">
 <xs:sequence>
 <xs:element minOccurs="0" name="name" type="xs:string"/>
 <xs:element minOccurs="0" name="type" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

processingGraphParameterBinding

<xs:complexType name="processingGraphParameterBinding">
 <xs:sequence>
 <xs:element minOccurs="0" name="name" type="xs:string"/>
 <xs:element minOccurs="0" name="boundTo" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

processingGraphUnresolvedParameter

 <xs:complexType name="processingGraphUnresolvedParameter">
 <xs:sequence>
 <xs:element minOccurs="0" name="name" type="xs:string"/>
 <xs:element minOccurs="0" name="type" type="xs:string"/>
 <xs:element minOccurs="0" name="defaultValue" type="xs:string"/>

D2.1 Reference Architecture and Energy Services v1.0 95

 </xs:sequence>
 </xs:complexType>

processingGraphConnection

 <xs:complexType name="processingGraphConnection">
 <xs:sequence>
 <xs:element minOccurs="0" name="sourceComponent" type="xs:string"/>
 <xs:element minOccurs="0" name="sourcePort" type="xs:string"/>
 <xs:element minOccurs="0" name="destinationComponent" type="xs:string"/>
 <xs:element minOccurs="0" name="destinationPort" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

9.6.3 Message

message

<xs:complexType name=" message ">
 <xs:sequence>
 <xs:element minOccurs="0" name="type" type="tns: messageType "/>

<xs:element minOccurs="0" name="content" type="xs: anyType "/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name=" entityWithMessage ">
 <xs:sequence>
 <xs:element minOccurs="0" name=" entityID " type="xs: string "/>

<xs:element minOccurs="0" name="message" type="tns: message "/>
 </xs:sequence>
</xs:complexType>

9.6.4 Strategy

StrategyAction

 <xs:complexType name="strategyAction">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="goal" nillable="true"
type="tns:strategyGoal"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="constraint"
nillable="true" type="tns:strategyConstraint"/>
 <xs:element minOccurs="0" name="sortByConstraintID" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="strategyResult"
nillable="true" type="tns:strategyResult"/>
 <xs:element minOccurs="0" name="strategyActionID" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entitiyIDs"
nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

StrategyGoal

 <xs:complexType name="strategyGoal">
 <xs:sequence>
 <xs:element minOccurs="0" name="kpiID"
type="tns:predefinedProcessingGraphs"/>
 <xs:element minOccurs="0" name="x1" type="tns: interval"/>
 <xs:element minOccurs="0" name="x2" type="tns: interval"/>
 <xs:element minOccurs="0" name="relation" type="tns:strategyRelationType"/>
 <xs:element name="value" type="xs:double"/>
 <xs:element minOccurs="0" name="goalID" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entitiyIDs"
nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

D2.1 Reference Architecture and Energy Services v1.0 96

StrategyConstraint

 <xs:complexType name="strategyConstraint">
 <xs:sequence>
 <xs:element minOccurs="0" name="description" type="xs:string"/>
 <xs:element minOccurs="0" name="constraintID" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entitiyIDs"
nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

StrategyResult

 <xs:complexType name="strategyResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="actionID" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="kpiResult"
nillable="true" type="tns:strategyKPIResult"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="metricResult"
nillable="true" type="tns:strategyMetricResult"/>
 <xs:element minOccurs="0" name="strategyResultID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

StrategyKPIResult

 <xs:complexType name="strategyKPIResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="type" type="tns:strategyResultType"/>
 <xs:element minOccurs="0" name="x1" type="tns: interval"/>
 <xs:element minOccurs="0" name="x2" type="tns: interval"/>
 <xs:element minOccurs="0" name="relation" type="tns:strategyRelationType"/>
 <xs:element name="value" type="xs:double"/>
 <xs:element minOccurs="0" name="kpiResultID"
type="tns:predefinedProcessingGraphs"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entitiyIDs"
nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

StrategyMetricResult

 <xs:complexType name="strategyMetricResult">
 <xs:sequence>
 <xs:element minOccurs="0" name="type" type="tns:strategyResultType"/>
 <xs:element name="value" type="xs:double"/>
 <xs:element minOccurs="0" name="unit" type="tns:metricUnit"/>
 <xs:element minOccurs="0" name="metricType" type="tns:metricType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="entitiyIDs"
nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

StrategyRelationType

 <xs:simpleType name="strategyRelationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="LEQ"/>
 <xs:enumeration value="EQ"/>
 <xs:enumeration value="GEQ"/>
 </xs:restriction>
 </xs:simpleType>

StrategyResultType

 <xs:simpleType name="strategyResultType">

D2.1 Reference Architecture and Energy Services v1.0 97

 <xs:restriction base="xs:string">
 <xs:enumeration value="GOAL"/>
 <xs:enumeration value="KPI"/>
 <xs:enumeration value="METRIC"/>
 <xs:enumeration value="ELSE"/>
 </xs:restriction>
 </xs:simpleType>

9.7 Service Interfaces (WSDL)

9.7.1 Attribute

9.7.1.1 AttributeService

 <xs:complexType name="subscribeAttribute">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg1"
type="tns:attributeType"/>
 <xs:element minOccurs="0" name="arg2" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="subscribeAttributeResponse"
type="tns:subscribeAttributeResponse"/>
 <xs:complexType name="subscribeAttributeResponse">
 <xs:sequence>
 <xs:element minOccurs="0" name="return" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="setAttributeValue" type="tns:setAttributeValue"/>
 <xs:complexType name="setAttributeValue">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 <xs:element minOccurs="0" name="arg1" type="tns:attributeType"/>
 <xs:element minOccurs="0" name="arg2" type="tns:baseAttributeValue"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="setAttributeValueResponse"
type="tns:setAttributeValueResponse"/>
 <xs:complexType name="setAttributeValueResponse">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="deleteAttributeSubscription"
type="tns:deleteAttributeSubscription"/>
 <xs:complexType name="deleteAttributeSubscription">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="deleteAttributeSubscriptionResponse"
type="tns:deleteAttributeSubscriptionResponse"/>
 <xs:complexType name="deleteAttributeSubscriptionResponse">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="getAttributeValue" type="tns:getAttributeValue"/>
 <xs:complexType name="getAttributeValue">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg1"
type="tns:attributeType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="getAttributeValueResponse"
type="tns:getAttributeValueResponse"/>
 <xs:complexType name="getAttributeValueResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:attributeValueResult"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="reportAttributeUpdates" type="tns:reportAttributeUpdates"/>
 <xs:complexType name="reportAttributeUpdates">

D2.1 Reference Architecture and Energy Services v1.0 98

 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg0"
type="tns:attributeValueResult"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="reportAttributeUpdatesResponse"
type="tns:reportAttributeUpdatesResponse"/>
 <xs:complexType name="reportAttributeUpdatesResponse">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="getAttributeTimeseries" type="tns:getAttributeTimeseries"/>
 <xs:complexType name="getAttributeTimeseries">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg1"
type="tns:attributeType"/>
 <xs:element minOccurs="0" name="arg2" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="arg3" type="xs:dateTime"/>
 <xs:element name="arg4" type="xs:long"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="getAttributeTimeseriesResponse"
type="tns:getAttributeTimeseriesResponse"/>
 <xs:complexType name="getAttributeTimeseriesResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:attributeTimeseriesResult"/>
 </xs:sequence>
 </xs:complexType>

<wsdl:definitions name="AttributeService" targetNamespace="http://smartkye.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://smartkye.eu/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">
 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="AttributeService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="deleteAttributeSubscriptionResponse">
 <wsdl:part name="parameters" ele-
ment="tns:deleteAttributeSubscriptionResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getAttributeValueResponse">
 <wsdl:part name="parameters" element="tns:getAttributeValueResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getAttributeValue">
 <wsdl:part name="parameters" element="tns:getAttributeValue">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getAttributeTimeseriesResponse">
 <wsdl:part name="parameters" element="tns:getAttributeTimeseriesResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="subscribeAttribute">
 <wsdl:part name="parameters" element="tns:subscribeAttribute">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="setAttributeValue">
 <wsdl:part name="parameters" element="tns:setAttributeValue">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="reportAttributeUpdatesResponse">
 <wsdl:part name="parameters" element="tns:reportAttributeUpdatesResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getAttributeTimeseries">
 <wsdl:part name="parameters" element="tns:getAttributeTimeseries">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="setAttributeValueResponse">
 <wsdl:part name="parameters" element="tns:setAttributeValueResponse">
 </wsdl:part>

D2.1 Reference Architecture and Energy Services v1.0 99

 </wsdl:message>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="subscribeAttributeResponse">
 <wsdl:part name="parameters" element="tns:subscribeAttributeResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="deleteAttributeSubscription">
 <wsdl:part name="parameters" element="tns:deleteAttributeSubscription">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="reportAttributeUpdates">
 <wsdl:part name="parameters" element="tns:reportAttributeUpdates">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="AttributeServicePortType">
 <wsdl:operation name="subscribeAttribute">
 <wsdl:input name="subscribeAttribute" message="tns:subscribeAttribute">
 </wsdl:input>
 <wsdl:output name="subscribeAttributeResponse" mes-
sage="tns:subscribeAttributeResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="setAttributeValue">
 <wsdl:input name="setAttributeValue" message="tns:setAttributeValue">
 </wsdl:input>
 <wsdl:output name="setAttributeValueResponse" mes-
sage="tns:setAttributeValueResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteAttributeSubscription">
 <wsdl:input name="deleteAttributeSubscription" mes-
sage="tns:deleteAttributeSubscription">
 </wsdl:input>
 <wsdl:output name="deleteAttributeSubscriptionResponse" mes-
sage="tns:deleteAttributeSubscriptionResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getAttributeValue">
 <wsdl:input name="getAttributeValue" message="tns:getAttributeValue">
 </wsdl:input>
 <wsdl:output name="getAttributeValueResponse" mes-
sage="tns:getAttributeValueResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="reportAttributeUpdates">
 <wsdl:input name="reportAttributeUpdates" mes-
sage="tns:reportAttributeUpdates">
 </wsdl:input>
 <wsdl:output name="reportAttributeUpdatesResponse" mes-
sage="tns:reportAttributeUpdatesResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getAttributeTimeseries">
 <wsdl:input name="getAttributeTimeseries" mes-
sage="tns:getAttributeTimeseries">
 </wsdl:input>
 <wsdl:output name="getAttributeTimeseriesResponse" mes-
sage="tns:getAttributeTimeseriesResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>

D2.1 Reference Architecture and Energy Services v1.0 100

 <wsdl:binding name="AttributeServiceSoapBinding"
type="tns:AttributeServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="subscribeAttribute">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="subscribeAttribute">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="subscribeAttributeResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteAttributeSubscription">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="deleteAttributeSubscription">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="deleteAttributeSubscriptionResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="setAttributeValue">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="setAttributeValue">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="setAttributeValueResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getAttributeValue">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getAttributeValue">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getAttributeValueResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="reportAttributeUpdates">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="reportAttributeUpdates">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="reportAttributeUpdatesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getAttributeTimeseries">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getAttributeTimeseries">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getAttributeTimeseriesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>

D2.1 Reference Architecture and Energy Services v1.0 101

 </wsdl:binding>
 <wsdl:service name="AttributeService">
 <wsdl:port name="AttributeServicePort" bind-
ing="tns:AttributeServiceSoapBinding">
 <soap12:address location="http://localhost:9090/AttributeServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.1.2 AttributeSubscriberService

 <xs:element name="notifyAttributeUpdate" type="tns:notifyAttributeUpdate"/>
 <xs:complexType name="notifyAttributeUpdate">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg1"
type="tns:entityAttributeValue"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="notifyAttributeUpdateResponse"
type="tns:notifyAttributeUpdateResponse"/>
 <xs:complexType name="notifyAttributeUpdateResponse">
 <xs:sequence/>
 </xs:complexType>

<wsdl:definitions name="AttributeSubscriberService" target-
Namespace="http://smartkye.eu/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://smartkye.eu/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">
 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="AttributeSubscriberService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="notifyAttributeUpdateResponse">
 <wsdl:part name="parameters" element="tns:notifyAttributeUpdateResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="notifyAttributeUpdate">
 <wsdl:part name="parameters" element="tns:notifyAttributeUpdate">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="AttributeSubscriberServicePortType">
 <wsdl:operation name="notifyAttributeUpdate">
 <wsdl:input name="notifyAttributeUpdate" mes-
sage="tns:notifyAttributeUpdate">
 </wsdl:input>
 <wsdl:output name="notifyAttributeUpdateResponse" mes-
sage="tns:notifyAttributeUpdateResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AttributeSubscriberServiceSoapBinding"
type="tns:AttributeSubscriberServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="notifyAttributeUpdate">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="notifyAttributeUpdate">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="notifyAttributeUpdateResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>

D2.1 Reference Architecture and Energy Services v1.0 102

 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="AttributeSubscriberService">
 <wsdl:port name="AttributeSubscriberServicePort" bind-
ing="tns:AttributeSubscriberServiceSoapBinding">
 <soap12:address loca-
tion="http://localhost:9090/AttributeSubscriberServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.2 Entity

 <xs:element name="getEntityTimeseries" type="tns:getEntityTimeseries"/>
 <xs:complexType name="getEntityTimeseries">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="getEntityTimeseriesResponse"
type="tns:getEntityTimeseriesResponse"/>
 <xs:complexType name="getEntityTimeseriesResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:entityProvidedMetric"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="findEntities" type="tns:findEntities"/>
 <xs:complexType name="findEntities">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="findEntitiesResponse" type="tns:findEntitiesResponse"/>
 <xs:complexType name="findEntitiesResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:entity"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="findEntityDescendants" type="tns:findEntityDescendants"/>
 <xs:complexType name="findEntityDescendants">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 <xs:element name="arg1" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="findEntityDescendantsResponse"
type="tns:findEntityDescendantsResponse"/>
 <xs:complexType name="findEntityDescendantsResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:entity"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="listTopLevelEntities" type="tns:listTopLevelEntities"/>
 <xs:complexType name="listTopLevelEntities">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="listTopLevelEntitiesResponse"
type="tns:listTopLevelEntitiesResponse"/>
 <xs:complexType name="listTopLevelEntitiesResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:entity"/>
 </xs:sequence>
 </xs:complexType>

<wsdl:definitions name="EntityService" targetNamespace="http://smartkye.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://smartkye.eu/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

D2.1 Reference Architecture and Energy Services v1.0 103

 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="EntityService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="listTopLevelEntities">
 <wsdl:part name="parameters" element="tns:listTopLevelEntities">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="listTopLevelEntitiesResponse">
 <wsdl:part name="parameters" element="tns:listTopLevelEntitiesResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getEntityTimeseriesResponse">
 <wsdl:part name="parameters" element="tns:getEntityTimeseriesResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getEntityTimeseries">
 <wsdl:part name="parameters" element="tns:getEntityTimeseries">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="findEntities">
 <wsdl:part name="parameters" element="tns:findEntities">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="findEntitiesResponse">
 <wsdl:part name="parameters" element="tns:findEntitiesResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="findEntityDescendantsResponse">
 <wsdl:part name="parameters" element="tns:findEntityDescendantsResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="findEntityDescendants">
 <wsdl:part name="parameters" element="tns:findEntityDescendants">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="EntityServicePortType">
 <wsdl:operation name="getEntityTimeseries">
 <wsdl:input name="getEntityTimeseries" message="tns:getEntityTimeseries">
 </wsdl:input>
 <wsdl:output name="getEntityTimeseriesResponse" mes-
sage="tns:getEntityTimeseriesResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="findEntities">
 <wsdl:input name="findEntities" message="tns:findEntities">
 </wsdl:input>
 <wsdl:output name="findEntitiesResponse" message="tns:findEntitiesResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="findEntityDescendants">
 <wsdl:input name="findEntityDescendants" mes-
sage="tns:findEntityDescendants">
 </wsdl:input>
 <wsdl:output name="findEntityDescendantsResponse" mes-
sage="tns:findEntityDescendantsResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="listTopLevelEntities">
 <wsdl:input name="listTopLevelEntities" message="tns:listTopLevelEntities">
 </wsdl:input>
 <wsdl:output name="listTopLevelEntitiesResponse" mes-
sage="tns:listTopLevelEntitiesResponse">
 </wsdl:output>

D2.1 Reference Architecture and Energy Services v1.0 104

 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="EntityServiceSoapBinding" type="tns:EntityServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getEntityTimeseries">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getEntityTimeseries">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getEntityTimeseriesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="findEntities">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="findEntities">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="findEntitiesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="findEntityDescendants">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="findEntityDescendants">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="findEntityDescendantsResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="listTopLevelEntities">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="listTopLevelEntities">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="listTopLevelEntitiesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="EntityService">
 <wsdl:port name="EntityServicePort" binding="tns:EntityServiceSoapBinding">
 <soap12:address location="http://localhost:9090/EntityServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.3 Group

 <xs:element name="listGroupMembers" type="listGroupMembers"/>
 <xs:complexType name="listGroupMembers">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="listGroupMembersResponse" type="listGroupMembersResponse"/>
 <xs:complexType name="listGroupMembersResponse">

D2.1 Reference Architecture and Energy Services v1.0 105

 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="deleteGroup" type="deleteGroup"/>
 <xs:complexType name="deleteGroup">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="deleteGroupResponse" type="deleteGroupResponse"/>
 <xs:complexType name="deleteGroupResponse">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="createGroup" type="createGroup"/>
 <xs:complexType name="createGroup">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg0"
type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="createGroupResponse" type="createGroupResponse"/>
 <xs:complexType name="createGroupResponse">
 <xs:sequence>
 <xs:element minOccurs="0" name="return" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

<wsdl:definitions name="GroupService" targetNamespace="http://smartkye.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://smartkye.eu/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">
 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="GroupService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="deleteGroup">
 <wsdl:part name="parameters" element="tns:deleteGroup">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="deleteGroupResponse">
 <wsdl:part name="parameters" element="tns:deleteGroupResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="listGroupMembers">
 <wsdl:part name="parameters" element="tns:listGroupMembers">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="listGroupMembersResponse">
 <wsdl:part name="parameters" element="tns:listGroupMembersResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="createGroup">
 <wsdl:part name="parameters" element="tns:createGroup">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="createGroupResponse">
 <wsdl:part name="parameters" element="tns:createGroupResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="GroupServicePortType">
 <wsdl:operation name="listGroupMembers">
 <wsdl:input name="listGroupMembers" message="tns:listGroupMembers">
 </wsdl:input>
 <wsdl:output name="listGroupMembersResponse" mes-
sage="tns:listGroupMembersResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>

D2.1 Reference Architecture and Energy Services v1.0 106

 </wsdl:operation>
 <wsdl:operation name="deleteGroup">
 <wsdl:input name="deleteGroup" message="tns:deleteGroup">
 </wsdl:input>
 <wsdl:output name="deleteGroupResponse" message="tns:deleteGroupResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="createGroup">
 <wsdl:input name="createGroup" message="tns:createGroup">
 </wsdl:input>
 <wsdl:output name="createGroupResponse" message="tns:createGroupResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="GroupServiceSoapBinding" type="tns:GroupServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="listGroupMembers">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="listGroupMembers">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="listGroupMembersResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="createGroup">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="createGroup">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="createGroupResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteGroup">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="deleteGroup">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="deleteGroupResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="GroupService">
 <wsdl:port name="GroupServicePort" binding="tns:GroupServiceSoapBinding">
 <soap12:address location="http://localhost:9090/GroupServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.4 Message

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MessageService" targetNamespace="http://smartkye.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://smartkye.eu/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

D2.1 Reference Architecture and Energy Services v1.0 107

 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="MessageService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="sendMessageResponse">
 <wsdl:part name="parameters" element="tns:sendMessageResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="sendMessage">
 <wsdl:part name="parameters" element="tns:sendMessage">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="MessageServicePortType">
 <wsdl:operation name="sendMessage">
 <wsdl:input name="sendMessage" message="tns:sendMessage">
 </wsdl:input>
 <wsdl:output name="sendMessageResponse" message="tns:sendMessageResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="MessageServiceSoapBinding"
type="tns:MessageServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="sendMessage">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="sendMessage">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="sendMessageResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="MessageService">
 <wsdl:port name="MessageServicePort" binding="tns:MessageServiceSoapBinding">
 <soap12:address location="http://localhost:9090/MessageServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.5 Metric

9.7.5.1 MetricSubscriberService

 <xs:complexType name="notifyMetricUpdate">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 <xs:element minOccurs="0" name="arg1" type="xs:dateTime"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg2"
type="tns:metricTimeseriesResult"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="notifyMetricUpdateResponse"
type="tns:notifyMetricUpdateResponse"/>
 <xs:complexType name="notifyMetricUpdateResponse">
 <xs:sequence/>
 </xs:complexType>

<wsdl:definitions name="MetricSubscriberService" target-
Namespace="http://smartkye.eu/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://smartkye.eu/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

D2.1 Reference Architecture and Energy Services v1.0 108

 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="MetricSubscriberService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="notifyMetricUpdate">
 <wsdl:part name="parameters" element="tns:notifyMetricUpdate">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="notifyMetricUpdateResponse">
 <wsdl:part name="parameters" element="tns:notifyMetricUpdateResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="MetricSubscriberServicePortType">
 <wsdl:operation name="notifyMetricUpdate">
 <wsdl:input name="notifyMetricUpdate" message="tns:notifyMetricUpdate">
 </wsdl:input>
 <wsdl:output name="notifyMetricUpdateResponse" mes-
sage="tns:notifyMetricUpdateResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="MetricSubscriberServiceSoapBinding"
type="tns:MetricSubscriberServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="notifyMetricUpdate">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="notifyMetricUpdate">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="notifyMetricUpdateResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="MetricSubscriberService">
 <wsdl:port name="MetricSubscriberServicePort" bind-
ing="tns:MetricSubscriberServiceSoapBinding">
 <soap12:address loca-
tion="http://localhost:9090/MetricSubscriberServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.5.2 MetricService

<xs:complexType name="subscribeMetric">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 <xs:element minOccurs="0" name="arg1" type="tns:entityFilter"/>
 <xs:element minOccurs="0" name="arg2" type="tns:metricType"/>
 <xs:element minOccurs="0" name="arg3" type="tns:interval"/>
 <xs:element name="arg4" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="subscribeMetricResponse" type="tns:subscribeMetricResponse"/>
 <xs:complexType name="subscribeMetricResponse">
 <xs:sequence>
 <xs:element minOccurs="0" name="return" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

D2.1 Reference Architecture and Energy Services v1.0 109

 <xs:element name="deleteMetricSubscription"
type="tns:deleteMetricSubscription"/>
 <xs:complexType name="deleteMetricSubscription">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="deleteMetricSubscriptionResponse"
type="tns:deleteMetricSubscriptionResponse"/>
 <xs:complexType name="deleteMetricSubscriptionResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="getMetricValue" type="tns:getMetricValue"/>
 <xs:complexType name="getMetricValue">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg1"
type="tns:metricType"/>
 <xs:element name="arg2" type="xs:long"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="getMetricValueResponse" type="tns:getMetricValueResponse"/>
 <xs:complexType name="getMetricValueResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:metricValueResult"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="getMetricTimeseries" type="tns:getMetricTimeseries"/>
 <xs:complexType name="getMetricTimeseries">
 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:entityFilter"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg1"
type="tns:metricType"/>
 <xs:element minOccurs="0" name="arg2" type="tns:interval"/>
 <xs:element name="arg3" type="xs:long"/>
 <xs:element name="arg4" type="xs:long"/>
 <xs:element name="arg5" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="getMetricTimeseriesResponse"
type="tns:getMetricTimeseriesResponse"/>
 <xs:complexType name="getMetricTimeseriesResponse">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="return"
type="tns:metricTimeseriesResult"/>
 </xs:sequence>
 </xs:complexType>

<wsdl:definitions name="MetricService" targetNamespace="http://smartkye.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://smartkye.eu/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">
 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="MetricService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="getMetricTimeseriesResponse">
 <wsdl:part name="parameters" element="tns:getMetricTimeseriesResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="subscribeMetric">
 <wsdl:part name="parameters" element="tns:subscribeMetric">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getMetricTimeseries">
 <wsdl:part name="parameters" element="tns:getMetricTimeseries">
 </wsdl:part>

D2.1 Reference Architecture and Energy Services v1.0 110

 </wsdl:message>
 <wsdl:message name="getMetricValueResponse">
 <wsdl:part name="parameters" element="tns:getMetricValueResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="deleteMetricSubscriptionResponse">
 <wsdl:part name="parameters" element="tns:deleteMetricSubscriptionResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="deleteMetricSubscription">
 <wsdl:part name="parameters" element="tns:deleteMetricSubscription">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="subscribeMetricResponse">
 <wsdl:part name="parameters" element="tns:subscribeMetricResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getMetricValue">
 <wsdl:part name="parameters" element="tns:getMetricValue">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="MetricServicePortType">
 <wsdl:operation name="subscribeMetric">
 <wsdl:input name="subscribeMetric" message="tns:subscribeMetric">
 </wsdl:input>
 <wsdl:output name="subscribeMetricResponse" mes-
sage="tns:subscribeMetricResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteMetricSubscription">
 <wsdl:input name="deleteMetricSubscription" mes-
sage="tns:deleteMetricSubscription">
 </wsdl:input>
 <wsdl:output name="deleteMetricSubscriptionResponse" mes-
sage="tns:deleteMetricSubscriptionResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMetricValue">
 <wsdl:input name="getMetricValue" message="tns:getMetricValue">
 </wsdl:input>
 <wsdl:output name="getMetricValueResponse" mes-
sage="tns:getMetricValueResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMetricTimeseries">
 <wsdl:input name="getMetricTimeseries" message="tns:getMetricTimeseries">
 </wsdl:input>
 <wsdl:output name="getMetricTimeseriesResponse" mes-
sage="tns:getMetricTimeseriesResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="MetricServiceSoapBinding" type="tns:MetricServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="subscribeMetric">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="subscribeMetric">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="subscribeMetricResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteMetricSubscription">

D2.1 Reference Architecture and Energy Services v1.0 111

 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="deleteMetricSubscription">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="deleteMetricSubscriptionResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMetricTimeseries">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getMetricTimeseries">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMetricTimeseriesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMetricValue">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getMetricValue">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMetricValueResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="MetricService">
 <wsdl:port name="MetricServicePort" binding="tns:MetricServiceSoapBinding">
 <soap12:address location="http://localhost:9090/MetricServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.6 CEP

<wsdl:definitions name="CEPService" targetNamespace="http://smartkye.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://smartkye.eu/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">
 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="CEPService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="createProcessingGraphInstanceResponse">
 <wsdl:part name="parameters" ele-
ment="tns:createProcessingGraphInstanceResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getProcessingGraph">
 <wsdl:part name="parameters" element="tns:getProcessingGraph">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="createProcessingGraphResponse">
 <wsdl:part name="parameters" element="tns:createProcessingGraphResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="deleteProcessingGraphResponse">
 <wsdl:part name="parameters" element="tns:deleteProcessingGraphResponse">
 </wsdl:part>
 </wsdl:message>

D2.1 Reference Architecture and Energy Services v1.0 112

 <wsdl:message name="destroyProcessingGraphInstanceResponse">
 <wsdl:part name="parameters" ele-
ment="tns:destroyProcessingGraphInstanceResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="createProcessingGraph">
 <wsdl:part name="parameters" element="tns:createProcessingGraph">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getProcessingGraphResponse">
 <wsdl:part name="parameters" element="tns:getProcessingGraphResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="executeMetricProcessingGraph">
 <wsdl:part name="parameters" element="tns:executeMetricProcessingGraph">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="destroyProcessingGraphInstance">
 <wsdl:part name="parameters" element="tns:destroyProcessingGraphInstance">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="executeMetricProcessingGraphResponse">
 <wsdl:part name="parameters" ele-
ment="tns:executeMetricProcessingGraphResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="createProcessingGraphInstance">
 <wsdl:part name="parameters" element="tns:createProcessingGraphInstance">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="deleteProcessingGraph">
 <wsdl:part name="parameters" element="tns:deleteProcessingGraph">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="CEPServicePortType">
 <wsdl:operation name="deleteProcessingGraph">
 <wsdl:input name="deleteProcessingGraph" mes-
sage="tns:deleteProcessingGraph">
 </wsdl:input>
 <wsdl:output name="deleteProcessingGraphResponse" mes-
sage="tns:deleteProcessingGraphResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="executeMetricProcessingGraph">
 <wsdl:input name="executeMetricProcessingGraph" mes-
sage="tns:executeMetricProcessingGraph">
 </wsdl:input>
 <wsdl:output name="executeMetricProcessingGraphResponse" mes-
sage="tns:executeMetricProcessingGraphResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="destroyProcessingGraphInstance">
 <wsdl:input name="destroyProcessingGraphInstance" mes-
sage="tns:destroyProcessingGraphInstance">
 </wsdl:input>
 <wsdl:output name="destroyProcessingGraphInstanceResponse" mes-
sage="tns:destroyProcessingGraphInstanceResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="createProcessingGraphInstance">
 <wsdl:input name="createProcessingGraphInstance" mes-
sage="tns:createProcessingGraphInstance">
 </wsdl:input>
 <wsdl:output name="createProcessingGraphInstanceResponse" mes-
sage="tns:createProcessingGraphInstanceResponse">
 </wsdl:output>

D2.1 Reference Architecture and Energy Services v1.0 113

 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="createProcessingGraph">
 <wsdl:input name="createProcessingGraph" mes-
sage="tns:createProcessingGraph">
 </wsdl:input>
 <wsdl:output name="createProcessingGraphResponse" mes-
sage="tns:createProcessingGraphResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getProcessingGraph">
 <wsdl:input name="getProcessingGraph" message="tns:getProcessingGraph">
 </wsdl:input>
 <wsdl:output name="getProcessingGraphResponse" mes-
sage="tns:getProcessingGraphResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="CEPServiceSoapBinding" type="tns:CEPServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="deleteProcessingGraph">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="deleteProcessingGraph">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="deleteProcessingGraphResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="executeMetricProcessingGraph">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="executeMetricProcessingGraph">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="executeMetricProcessingGraphResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="destroyProcessingGraphInstance">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="destroyProcessingGraphInstance">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="destroyProcessingGraphInstanceResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="createProcessingGraph">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="createProcessingGraph">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="createProcessingGraphResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="createProcessingGraphInstance">
 <soap12:operation soapAction="" style="document"/>

D2.1 Reference Architecture and Energy Services v1.0 114

 <wsdl:input name="createProcessingGraphInstance">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="createProcessingGraphInstanceResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getProcessingGraph">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getProcessingGraph">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getProcessingGraphResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="CEPService">
 <wsdl:port name="CEPServicePort" binding="tns:CEPServiceSoapBinding">
 <soap12:address location="http://localhost:9090/CEPServicePort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

9.7.7 Strategy

<wsdl:definitions name="StrategyService" targetNamespace="http://smartkye.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://smartkye.eu/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">
 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://smartkye.eu/" schemaLoca-
tion="StrategyService_schema1.xsd"/>
</schema>
 </wsdl:types>
 <wsdl:message name="getStrategyActionResponse">
 <wsdl:part name="parameters" element="tns:getStrategyActionResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getStrategyAction">
 <wsdl:part name="parameters" element="tns:getStrategyAction">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="storeStrategyAction">
 <wsdl:part name="parameters" element="tns:storeStrategyAction">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="SmartkyeException">
 <wsdl:part name="SmartkyeException" element="tns:SmartkyeException">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="storeStrategyActionResponse">
 <wsdl:part name="parameters" element="tns:storeStrategyActionResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="StrategyServicePortType">
 <wsdl:operation name="storeStrategyAction">
 <wsdl:input name="storeStrategyAction" message="tns:storeStrategyAction">
 </wsdl:input>
 <wsdl:output name="storeStrategyActionResponse" mes-
sage="tns:storeStrategyActionResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>

D2.1 Reference Architecture and Energy Services v1.0 115

 <wsdl:operation name="getStrategyAction">
 <wsdl:input name="getStrategyAction" message="tns:getStrategyAction">
 </wsdl:input>
 <wsdl:output name="getStrategyActionResponse" mes-
sage="tns:getStrategyActionResponse">
 </wsdl:output>
 <wsdl:fault name="SmartkyeException" message="tns:SmartkyeException">
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="StrategyServiceSoapBinding"
type="tns:StrategyServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="storeStrategyAction">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="storeStrategyAction">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="storeStrategyActionResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getStrategyAction">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getStrategyAction">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getStrategyActionResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SmartkyeException">
 <soap12:fault name="SmartkyeException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="StrategyService">
 <wsdl:port name="StrategyServicePort" bind-
ing="tns:StrategyServiceSoapBinding">
 <soap12:address location="http://localhost:9090/StrategyServicePort"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

	1 Introduction
	1.1 Purpose and Scope of the Document
	1.2 Energy efficient neighbourhood – State of the art review
	1.2.1 Principles and vision of ICT enabled energy efficient neighbourhoods
	1.2.2 ICT enabled platforms for energy efficient neighbourhoods

	2 SmartKYE Architecture Definition Approach
	2.1 Introduction
	2.2 Architecture definition methodology - TOGAF
	2.2.1 Architecture Development Method (ADM)
	2.2.1.1 Preliminary phase
	2.2.1.2 Phase A – Architecture vision
	2.2.1.3 Phase B – Business Architecture
	2.2.1.4 Phase C – Information Systems Architecture
	2.2.1.5 Phase D – Technology Architecture
	2.2.1.6 Phase E – Opportunities and solutions
	2.2.1.7 Phase F – Migration planning
	2.2.1.8 Phase G – Implementation governance
	2.2.1.9 Phase H – Architecture Change Management

	2.2.2 Adapting the ADM to SmartKYE project

	2.3 The Open Group SOA reference Architecture
	2.3.1 The Open Group SOA Reference Architecture - Overview
	2.3.1.1 The Open Group SOA RA basic concepts
	2.3.1.2 The Open Group SOA RA layers

	3 SmartKYE Architecture Vision
	3.1 Introduction
	3.1.1 Stakeholders
	3.1.2 Architectural requirements - Overview

	3.2 Architectural drivers – Energy Management Systems (EMS) integration
	3.2.1 Wind Power Plants
	3.2.2 Public buildings
	3.2.3 Public lighting system
	3.2.4 Electric vehicle infrastructure

	3.3 SmartKYE architecture vision
	3.4 SmartKYE architectural principles
	3.4.1 Business Principles
	3.4.2 Data principles
	3.4.3 Application Principles

	4 SmartKYE Reference Architecture Concept
	4.1 Introduction
	4.2 SmartKYE Reference Architecture – Horizontal or Functional Layers
	4.2.1 SmartKYE Consumer Layer
	4.2.2 SmartKYE Service Layer

	4.3 SmartKYE Reference Architecture – Cross-cutting or Supportive Layers
	4.3.1 SmartKYE Integration Layer
	4.3.2 SmartKYE Quality of Service layer
	4.3.3 SmartKYE Information Layer
	4.3.4 SmartKYE Governance layer

	4.4 SmartKYE architecture conceptual view

	5 SmartKYE Service Architecture
	5.1 Service Architecture Overview
	5.2 Service Specification
	5.2.1 Entity Service
	5.2.2 Group Service
	5.2.3 Metric Service
	5.2.4 Attribute Service
	5.2.5 Complex Event Processing (CEP) Service
	5.2.5.1 Introduction
	5.2.5.2 CEP System

	5.2.6 Strategy Service
	5.2.7 Message Service
	5.2.8 Security
	5.2.8.1 Introduction and Rationale
	5.2.8.2 The OAuth 2.0 Protocol

	6 Data Exchange Specification
	6.1 Introduction
	6.2 Basic Objects
	6.2.1 EntityType enumeration
	6.2.2 MetricType enumeration
	6.2.3 AttributeType enumeration
	6.2.4 Interval
	6.2.5 SmartKyeException
	6.2.6 EntityFilter
	6.2.7 EntityError

	6.3 Service-related Objects
	6.3.1 Attribute
	6.3.2 Entity
	6.3.3 Message
	6.3.4 Metric
	6.3.5 Strategy

	7 Conclusions
	8 References and Acronyms
	8.1 Acronyms
	8.2 References

	9 Annex
	9.1 SmartKYE pilot sites EMS – PV/Wind Power EMS
	9.1.1 PV/Wind Power Plant - Crete
	9.1.2 PV/Wind Power Plant - Barcelona

	9.2 SmartKYE pilot sites EMS – Public buildings
	9.2.1 Public buildings EMS - Crete
	9.2.2 Public buildings EMS - Barcelona

	9.3 SmartKYE pilot sites EMS – Public Lighting System
	9.4 SmartKYE pilot sites EMS – Electric Vehicle Infrastructure
	9.5 SmartKYE architecture building blocks and capabilities mapping
	9.6 Exchanged Objects (XSD)
	9.6.1 Basic Objects
	9.6.2 Service Related Objects
	9.6.2.1 Entity
	9.6.2.2 Metric
	9.6.2.3 Attribute
	9.6.2.4 CEP

	9.6.3 Message
	9.6.4 Strategy

	9.7 Service Interfaces (WSDL)
	9.7.1 Attribute
	9.7.1.1 AttributeService
	9.7.1.2 AttributeSubscriberService

	9.7.2 Entity
	9.7.3 Group
	9.7.4 Message
	9.7.5 Metric
	9.7.5.1 MetricSubscriberService
	9.7.5.2 MetricService

	9.7.6 CEP
	9.7.7 Strategy

