

Design and Preliminary Specification of the OESP
 1

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other.

**Security Class: PU: Public; PP: Restricted to other programme participants (including the Commission); RE: Restricted to
a group defined by the consortium (including the Commission); CO: Confidential, only for members of the consortium
(including the Commission).

Title: Document Version:

D3.1 Design and Preliminary Specification of the OESP 1.0

Project Number:
Project
Acronym:

Project Title:

FP7-60061-EEB-ICT-2011.6.5 SmartKYE Smart Grid Key Neighbourhood Indicator Cockpit

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M12 (October 2013) M12 (October 2013) R-PU

Responsible: Organisation: Contributing WP:

Robert Sauter UDE WP3

Authors (organization):

Robert Sauter (UDE), Richard Figura (UDE), Lucas Pons (ETRA I+D), Diego García (ETRA I+D), Lola
Alacreu (ETRA I+D), José Javier García (BDigital), Deja Ilic (SAP),

Keywords:

SOA, Energy Management, Web Services, Communication platform

Design and Preliminary Specification of the OESP 2

Revision History
Revision Date Description Author (Organisation)

V0.1 17.09.2013 New document Robert Sauter (UDE)

V0.2

14.10.2013 High-Performance Web Services Robert Sauter (UDE), Richard

Figura (UDE)

V0.3 21.10.2013 Complete Design Robert Sauter (UDE)

V0.4 25.10.2013 Complete Draft Robert Sauter (UDE)

V0.6 28.10.2013 Peer Review José Javier García (BDigital)

V0.7 28.10.2013 Peer Review Deja Ilic (SAP)

V0.8 29.10.2013 Peer Review Lucas Pons (ETRA I+D),

Diego García (ETRA I+D),

Lola Alacreu (ETRA I+D)

V1.0 31.10.2013 Reworked according to comments Robert Sauter (UDE)

Design and Preliminary Specification of the OESP 3

Work Package 3 is dedicated to the specification, design and implementation of the Open
Energy Services Platform (OESP). The OESP acts as a flexible information hub that
decouples the energy applications interfacing different EMS in a neighbourhood – i.e. in the
case of SmartKYE both the Business and M&C cockpit – from the heterogeneity of the smart
grid and communication infrastructure. The OESP builds on the architecture and services
developed and identified in WP2 and provides the necessary infrastructure for the effective
processing and delivery of services while allowing the applications to dynamically express
their information requirements and taking the capabilities of the EMS infrastructure into
account.

This document describes the preliminary specification and design of the OESP. It is closely
related to and complements D2.1, which describes the overall architecture of the SmartKYE
system and the interfaces provided by the OESP and by the energy management systems.
The document consists of three major parts:

First, we analyse the requirements collected in D1.1 for their impact on the specification and
design of the OESP. Moreover, we explore the main considerations to enable the deployment
in Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) environments.

Second, the core part of the document deals with the specification and design of the OESP
with a special focus on scalability. We describe the architecture and the decomposition of the
Platform into individual components that may be deployed separately to adapt to the size of
the installation. Next, we discuss the node-centric and data-centric communication paradigms
as well as the push-based and pull-based access patterns offered by the platform. The
combination of these mechanisms offer suitable abstractions for all considered use cases
while taking into account efficiency and the potential for optimization of the data flow by the
platform. This chapter is completed with the description of the EMS Service Endpoints, and
discussions of the publish/subscribe service and grouping service.

The third major part of the document investigates possibilities for high-performance web
services. This includes enhancements and optimizations of the different layers of the web
service stack spanning HTTP evolutions like SPDY and HTTP 2.0, various compression
schemes, and alternative content formats.

Abstract:

Design and Preliminary Specification of the OESP 4

Table of Contents

1 Introduction ... 7

1.1 Purpose of the Document ... 7

1.2 Scope of the Document .. 7

1.3 Structure of the Document .. 7

2 Requirements Analysis ... 8

2.1 Core Functionality .. 8

2.1.1 Requirements ... 8

2.2 Publish/Subscribe ... 9

2.2.1 Requirements ... 9

2.3 Complex Event Processing ... 10

2.3.1 Requirements ... 10

2.4 Data/Information Requirements .. 10

2.4.1 Requirements ... 11

2.5 Interface Requirements .. 11

2.5.1 Requirements ... 11

2.6 Performance ... 12

2.6.1 Requirements ... 12

2.7 Cloud-Aware Design ... 12

2.7.1 Software as a Service (SaaS) ... 13

2.7.2 Platform as a Service (PaaS) .. 13

2.7.3 Infrastructure as a Service (IaaS) ... 14

2.7.4 Conclusions .. 14

3 Specification and Design .. 15

3.1 Architecture .. 15

3.2 Communication Paradigms ... 17

3.2.1 Node-centric Communication .. 17

3.2.2 Data-centric Communication ... 17

3.2.3 On-Demand (Pull) ... 18

3.2.4 Continuous Notifications (Push) .. 18

3.2.5 Comparison .. 18

3.2.6 API Mapping ... 19

3.3 EMS Service Endpoint Description ... 20

3.4 Publish/Subscribe Service .. 21

3.5 Grouping Service .. 21

3.6 Conclusions .. 21

Design and Preliminary Specification of the OESP 5

4 High-Performance Web Services ... 23

4.1 HTTP 1.1 Alternatives and Developments .. 23

4.1.1 SPDY ... 23

4.1.2 Microsoft S+M .. 23

4.1.3 QUIC .. 23

4.1.4 HTTP 2.0 .. 23

4.1.5 Conclusions .. 23

4.2 HTTP Content Compression ... 24

4.3 XML Specific Compression ... 24

4.3.1 Fast Infoset ... 24

4.3.2 Efficient XML Interchange (EXI) .. 24

4.3.3 Conclusions .. 24

4.4 XML/SOAP Alternatives ... 24

4.4.1 Javascript Object Notation (JSON) ... 25

4.4.2 ASN.1 ... 26

4.4.3 Protocol Buffers .. 29

4.4.4 Conclusions .. 32

4.5 API Design for High Performance ... 32

4.6 Conclusions .. 33

5 Conclusions ... 34

6 References and Acronyms ... 35

6.1 Acronyms ... 35

6.2 References ... 37

Design and Preliminary Specification of the OESP 6

List of Figures

Figure 1: Cloud Computing Service Models ... 13

Figure 2: SmartKYE Federated Architecture .. 15

Figure 3: Example Physical Architecture (OESP components in green and blue) 16

Figure 4: Publish/Subscribe System, Logical View ... 19

Figure 5: EMS Service Endpoint Description (OESP components in blue and green) 20

Figure 6: Services for Entity Grouping ... 21

Figure 7: ASN.1 Elements ... 27

Figure 8: TLV Encoding ... 28

List of Tables

Table 1: Protocol Buffers Varint Example ... 31

Table 2: Protocol Buffer Wire Types .. 31

Design and Preliminary Specification of the OESP 7

1 Introduction

1.1 Purpose of the Document

The purpose of this document is to provide the preliminary description for the specification
and design of the Open Energy Service Platform (OESP). This document is closely related
and complementary to D2.1 “Reference Architecture and Energy Services v1.0”. D2.1
describes the overall architecture of the SmartKYE system. Moreover, it contains the
definitions of the interfaces between the OESP on the one hand and the clients, energy
management systems and other data sources on the other hand.

This document focuses on the internal design of the OESP. It describes the architecture of
the platform and the possibilities for decomposition and individual deployment to increase
scalability of the overall system.

1.2 Scope of the Document

This document describes the preliminary specification and design of the OESP with the
exception of the internal workings of the Complex Event Processing engine which is
scheduled for D3.3. It is complementary to D2.1 and both will be updated to describe the
final versions in D3.3 and D2.2 respectively.

1.3 Structure of the Document

The rest of this document is structured as follows. In Chapter 2, we review the requirements
with respect to the specification of the platform. This chapter is divided into sections that
describe different categories of requirements for the middleware. Moreover, we discuss the
increasingly important deployment options of Infrastructure as a Service and Platform as a
Service. In the following chapter, we describe the specification and design of the OESP.
This includes the architecture and the communication concepts supported by the platform.
We discuss possibilities to optimize the performance of web services in Chapter 4 followed
by the conclusions of the document.

Design and Preliminary Specification of the OESP 8

2 Requirements Analysis

The full requirements specification for SmartKYE has been done in WP1 and is described in
D1.1, where the requirements are separated into 8 different categories according to the 4
main development parts of the SmartKYE projects and the 4 different EMS types involved.

In this chapter, we shortly discuss the requirements list related to the Open Energy
Services Platform (OESP) to provide a framework for the following description. For this
purpose we divided the OESP requirements into 6 different groups: core functionality,
publish/subscribe, complex event processing, data and information requirements, interface
requirements, and performance requirements. In each section, we shortly describe the
category and list all requirements that belong in that category. To keep that list compact,
the specification table will only list the ID, a short description and the priority. The ID field is
unique in the set of all requirements of the requirements analysis in D1.1. The priority field
can be from the set: low, medium and high. The full description of all requirements including
all further fields is listed in D1.1.

2.1 Core Functionality

This section deals with the core functionality of the OESP: making data available in a
uniform way to decouple clients from the set of varied heterogeneous energy management
systems and other data sources. Additional core functionalities are:

 support for metadata like timestamps and the origin of information

 data aggregation and KPI calculation

 to enable the management of EMS

2.1.1 Requirements

ID: OES_006 Type: Functional and data requirements Priority: High

Description: The OESP should support information summaries.

ID: OES_007 Type: Functional and data requirements Priority: High

Description: The OESP should record the origin of information.

ID: OES_008 Type: Functional and data requirements Priority: High

Description: The OESP should record the timestamp of information.

ID: OES_010 Type: Functional and data requirements Priority: Medium

Description: The OESP should support short-time persistence for data.

ID: OES_011 Type: Functional and data requirements Priority: Medium

Description: The OESP should support parametrization of persistence duration.

ID: OES_015 Type: The scope of the product Priority: High

Description: OESP should handle both measurements and events

Design and Preliminary Specification of the OESP 9

ID: OES_024 Type: Functional and data requirements Priority: Medium

Description: It should provide information from different EMS

ID: OES_034 Type: Functional and data requirements Priority: High

Description: Health status of services and systems

ID: OES_035 Type: The scope of the work Priority: High

Description: The OESP should allow EMS to provide data necessary for KPI calculation.

ID: OES_037 Type: The scope of the product Priority: Medium

Description: The OESP should enable the management of the EMSs

ID: OES_038 Type: Performance requirements Priority: Medium

Description: OESP should provide information about the health/status of its services and keep historical
data of it

ID: OES_043 Type: Operational requirements Priority: High

Description: Historic data should be kept as necessary for the calculation of KPIs

2.2 Publish/Subscribe

The publish/subscribe API allows the clients to specify their information needs and receive
continuous notifications for both measurements and attribute updates. On the one hand,
both the Business Cockpit and the Monitoring and Control Cockpit can access this API to
continuously use the information for updates of state information and to adapt management
strategies. On the other hand, this is the foundation for a timely delivery of alarms and
events.

2.2.1 Requirements

ID: OES_002 Type: Functional and data requirements Priority: High

Description: The OESP should distribute the information of the infrastructure efficiently based on the
declared needs of the cockpits.

ID: OES_003 Type: Functional and data requirements Priority: High

Description: The OESP should allow the creation and use of application-defined filters for data.

ID: OES_004 Type: Functional and data requirements Priority: High

Description: The OESP should allow spatial aggregation of data.

ID: OES_006 Type: Functional and data requirements Priority: High

Description: The OESP should support information summaries.

Design and Preliminary Specification of the OESP 10

ID: OES_009 Type: Functional and data requirements Priority: High

Description: The OESP should allow temporal aggregation of data.

ID: OES_015 Type: The scope of the product Priority: High

Description: OESP should handle both measurements and events

ID: OES_021 Type: The scope of the work Priority: Medium

Description: OESP sould support event and alarm management

2.3 Complex Event Processing

One of the core cross-work-package research topics of the SmartKYE project is the shift of
parts of the application functionality into the platform. This fosters the reuse of processing
logic and allows the coarse-grained optimization of the data flows by the platform.

Additionally, the requirements describe functionality for spatial and temporal aggregation of
data which is not only made available in the CEP engine but also for the on-demand and
continuous access to measurement data provided by the core APIs and the
publish/subscribe mechanism.

2.3.1 Requirements

ID: OES_003 Type: Functional and data requirements Priority: High

Description: The OESP should allow the creation and use of application-defined filters for data.

ID: OES_004 Type: Functional and data requirements Priority: High

Description: The OESP should allow spatial aggregation of data.

ID: OES_009 Type: Functional and data requirements Priority: High

Description: The OESP should allow temporal aggregation of data.

ID: OES_005 Type: Functional and data requirements Priority: High

Description: The OESP should allow shifting repetitive parts of application logic into the platform.

ID: OES_041 Type: Functional and data requirements Priority: Medium

Description: OESP should support persistent creation of processing rules

2.4 Data/Information Requirements

The category data/information requirements specifies which data and functionality of other
information sources – foremost the energy management systems – must be made available
through the platform. An important example is the provision of weather forecast information
which is both necessary for consumption and productions estimated of most energy
management systems.

Design and Preliminary Specification of the OESP 11

2.4.1 Requirements

ID: OES_014 Type: The scope of the product Priority: Low

Description: The OESP should provide access to the history of system changes of an EMS

ID: OES_017 Type: The scope of the work Priority: Medium

Description: Type of Weather Forecasting data that should be handled for WFs: Wind Speed,Wind
Direction, altitude,temperature,pressure,location

ID: OES_018 Type: The scope of the work Priority: Medium

Description: Type of Forecasting data that should be handled Demand:temperature,pressure,location

ID: OES_019 Type: The scope of the work Priority: Medium

Description: Type of Weather Forecasting information that should be handled for PVs:irradiation,
altitude,temperature,pressure,location

ID: OES_020 Type: The scope of the work Priority: Medium

Description: The OESP should provide access the electrical topology of an EMS

ID: OES_032 Type: Functional and data requirements Priority: High

Description: Provision of Energy mix

2.5 Interface Requirements

The category interface requirements contains requests about the interaction of the OESP
with other subsystems. The primary requirement is the availability of the OESP via secure
web services over the internet. This applies both to the communication with the energy
management systems and the interaction with the cockpits. Additionally, issues that affect
an EMS should not have any impact on the communication with other systems.

2.5.1 Requirements

ID: OES_001 Type: Functional and data requirements Priority: High

Description: The OESP should support secure web services.

ID: OES_013 Type: The scope of the product Priority: High

Description: OESP communication with any District Energy Management System (EMS) should be based
on web services

ID: OES_016 Type: The scope of the work Priority: Medium

Description: OESP should have a strong user management mechanism

ID: OES_039 Type: Functional and data requirements Priority: Medium

Description: OESP should support standardized eventing

Design and Preliminary Specification of the OESP 12

ID: OES_027 Type: Functional and data requirements Priority: Medium

Description: SmartKYE components system clock shall be aligned to a clock reference

ID: OES_031 Type: The scope of the work Priority: High

Description: communication via secure web services (over https)

ID: OES_028 Type: Functional and data requirements Priority: Medium

Description: EMS unavailability all site energy subsystems shall not be affected.

ID: OES_036 Type: The scope of the work Priority: High

Description: The services of OESP should be securely available over the Internet

2.6 Performance

The main requirements with respect to the performance of the platform are the investigation
of how to improve the performance of web services and the need for scalability of the
platform. The platform should be adaptable to various deployment sizes to ease adoption
with municipalities.

2.6.1 Requirements

ID: OES_012 Type: Performance requirements Priority: Low

Description: The OESP should investigate possibilities to improve the performance of web services.

ID: OES_026 Type: Functional and data requirements Priority: Medium

Description: OES should have a modular architecture design that assures scalability and adaptability to
different deployment sites.

ID: OES_042 Type: Performance requirements Priority: Medium

Description: OESP should be scalable and high-performant

ID: OES_033 Type: Functional and data requirements Priority: High

Description: Aggregated Energy data available every 15 minutes

2.7 Cloud-Aware Design

In recent years, “cloud-*” has become widely known buzzword both in the consumer and
enterprise world. More specifically, the services offered by cloud computing providers can
be grouped into several categories. The most important categories (c.f., Figure 1) for
SmartKYE are infrastructure as a service (IaaS), platform as a service (PaaS), and software
as a service (SaaS). While the cloud designator has been overused, the potential to use the
OESP with these service categories significantly extends the flexibility for deployments.

Design and Preliminary Specification of the OESP 13

Figure 1: Cloud Computing Service Models

2.7.1 Software as a Service (SaaS)

Software as a Service is as much a business model as a technological concept. From a
business perspective the most important difference is that instead of buying Software
clients instead purchase the access to software. Often called “on-demand software”, pricing
can vary significantly and includes pay-per-use and pay-per-user usually involving a
subscription component.

From a technological viewpoint, this model is most prevalent as a web application but can
also include, e.g., traditional remote desktop access. A main difference is that the cloud
provider manages his infrastructure and is responsible for providing the desired or agreed-
on service level.

While the technological paradigm is already implied for the OESP, since the core capability
is the communication with systems over the internet, it is important for the project to not
limit the possibility of both business aspects: the management and operation of the platform
may both be handled by a dedicated service provider or for example by the municipality
itself.

2.7.2 Platform as a Service (PaaS)

While SaaS is mostly targeted at users of the software – both in the consumer and
enterprise area, Platform as a Service is a paradigm for the developers of applications that
run in the cloud. In this model, cloud operators deliver a computing platform on a certain
abstraction level, usually a programming language execution environment, e.g., the Java
Virtual Machine. Often the access to the resources of the operating system is severely
limited and instead the operator provides dedicated APIs for example for access to
persistent storage. The abstraction level may vary widely and spans file based, object
based and various database paradigms.

The core challenge tackled by the cloud operator is the seamless scalability for the

Clients
Cockpits, mobile phones, …

SaaS
Web applications, backend

services

PaaS
Computing capacity, databases,

storage

IaaS
Virtual machines, load

balancing, servers

Design and Preliminary Specification of the OESP 14

application developers. This is usually targeted at request-response based web applications
that coupled with a machine spanning persistent storage model allows the transparent
execution load balancing on a large number of physical machines.

While most web applications already drop the assumption on the permanent execution of
the software, most commonly the major challenge in developing for a PaaS cloud is the
limitation of the storage API that at least requires design considerations to enable optimal
scalability.

2.7.3 Infrastructure as a Service (IaaS)

A more basic offering of cloud service operators is the Infrastructure as a Service model.
This approach offers computers (physical or virtual machines) to the application developers.
These can install a variety of operating systems on them and are usually responsible for
managing and updating the machines. The main difference to traditional offerings is that the
operating system image can be arbitrarily replicated to a number of machines. This can
also be done on demand, e.g., to handle load peaks or adapt the capacity based on
periodic schedules (e.g., day vs. night).

Additionally, the cloud operator usually offers additional services. This can include load
balancing, firewalls, and network configurations but also pre-defined operating system or
application server images. Another area is distributed storage and backup both on the
traditional file abstraction level and also on block or object level.

2.7.4 Conclusions

Both Platform as a Service and Infrastructure as a Service are interesting deployment
scenarios for the OESP. Therefore, the following main challenges have to be addressed in
the design:

- no permanently running software (periodic tasks are possible)
- strong focus on single request-response operations
- minimal dependency on global persistent knowledge
- abstraction layer between core functionality and persistent storage services

These design considerations are also fully in line with scalability as a major design goal.

Design and Preliminary Specification of the OESP 15

3 Specification and Design

This chapter describes the internal mechanisms of the OESP. As such, it must be seen in
combination with D2.1 which contains the overall architecture of the SmartKYE system
and the definition of the interactions between the platform on the one hand and the energy
management systems, the cockpits and other interaction partners on the other hand.

3.1 Architecture

Figure 2: SmartKYE Federated Architecture

In Figure 2, we show the high-level architecture view of the SmartKYE system. Logically,
the OESP is the single communication hub that enables the interaction among the entities
in the federated SmartKYE system. However, a physical design following this architecture
would include a single point of failure and limit the scalability of the system considerably.

Design and Preliminary Specification of the OESP 16

Figure 3: Example Physical Architecture (OESP components in green and blue)

In Figure 3, we show an example for a possible physical deployment of the SmartKYE
system. The example highlights several of the following key design decisions of the OESP:

 Potential separation of the OESP APIs (although we expect the entity, metric and
attribute API to be usually co-located)

 Multiple OESP instances to balance the load of clients

 CEP Engine separated from CEP API

 Multiple CEP instances

 Usually: physical co-location of EMS, connector and publish/subscribe system

To simplify the figure, we do not show the grouping service, which is discussed in more
detail below.

The entity, metric, and attribute API all use internally a registry that contains information
about the EMS present in the system. It is noteworthy, that this registry does not contain
information about all entities, but just about the endpoints. Entities can be queried on
demand from the EMS but also cached for to improve efficiency.

Similarly, the metric management component and the publish/subscribe components
contain caching functionality. However, this is transparent to both the clients and data
sources and, thus, allows the parallel development and optimization of the system.

In general, the OESP does not store information itself but requests this information from the
appropriate energy management systems. This improves scalability – as with adding an
EMS automatically the necessary storage space is added –, flexibility – as the EMS can
decide when and where to store information –, and efficiency – as only the information that
is actually required by any clients has to be transferred from the EMS while still allowing the
OESP to use caching to exploit that some information will be requested by multiple clients.

If a request spans multiple EMS, the OESP combines and potentially aggregates the

Client/
Cockpit

Client/
Cockpit

Client/
Cockpit

Attribute +
Entity API

Metric
API

Registry

EMS/Data
Source

Pub/Sub
Mgmt.

Connector

EMS/Data
Source

Pub/Sub
Mgmt.

Connector

CEP
Engine

CEP
API

EMS/Data
Source

Pub/Sub
Mgmt.

Connector

Attribute +
Entity API

Metric
API

Registry

CEP
Engine

CEP
Engine

CEP
Engine

Design and Preliminary Specification of the OESP 17

individual responses from the EMS. If one or more energy management systems do not
respond at all or return errors, the OESP will return the partial information received together
with a description of which data sources were not available at all and the error information
received from the data sources.

3.2 Communication Paradigms

The platform is a communication and unification layer that manages the interactions
between the different systems in the envisioned scenario. In SmartKYE the applications
(e.g. for monitoring, prediction and management) have to deal with information coming from
a vastly heterogeneous set of different energy systems and devices (e.g., wind farms,
public light controllers). The OESP with its adapters enables uniform data access and
cooperation between the applications and abstracts from underlying differences.

Communication solutions can be distinguished into different types depending on the
communication mechanisms they provide. One major division is between data-centric and
node-centric solutions. Mostly orthogonal to this distinction is the use of an on-demand
(pull) or continuous notification approach (push). We describe these major categories
shortly in the following. Our platform supports all paradigms to allow the application to
choose the solution suitable for a given task.

3.2.1 Node-centric Communication

In a node-centric communication the most important task is to get information from a
specific node (e.g., a certain entity) within the network. In this case the communication has
to provide an API to address and access a certain node to read/write data or access
services. This kind of communication is in common use and examples include CORBA or
Java RMI.

The advantage of this approach is the direct control of individual nodes which is especially
suitable of the execution of commands. While often directory services are used to find the
nodes that provide a certain service, the relatively strong coupling between entities can limit
the advantages resulting from a fully distributed system.

To access data from a number of nodes, a consumer has to find the nodes (e.g., using a
directory service) and request the data from each one individually.

3.2.2 Data-centric Communication

In a data-centric communication, the key concept is the data itself. The members of the
network can be separated into providers of data and consumers specifying their interest in
for certain types of data. This separation is not strict as individual nodes can contain both
components providing data and consuming data.

From a logical viewpoint, the key point for the user of the communication is to simply
specify an interest for data without first having to locate the relevant devices and query
each of them individually. Likewise, providers of data just advertise the kinds of data they
provide. The platform is then responsible for matching subscribers and publishers and
establishing the necessary communication connections. This loose coupling enables the
easy creation of fully distributed systems.

From a network viewpoint, the key advantage is the possibility for optimizations by the
communication. Depending on the network topology, QoS requirements and the provided
communication technologies, the communication can select and adapt suitable
communication protocols to efficiently distribute the data.

Push-based data-centric communication solutions allow data to be typed. Through this it is
possible to connect consumers to a certain type of data (e.g. energy-readings). Every
consumer can so decide which type of data it wants to receive and every producer can

Design and Preliminary Specification of the OESP 18

decide which type of data it offers.

3.2.3 On-Demand (Pull)

The on-demand paradigm allows application to request data in the moment it is required,
e.g., to generate a user-requested diagram. On the one hand, this allows specifying directly
and exactly which information is needed and only this information has to be transferred over
the network. On the other hand, the need to first issue the request before the involved
systems (e.g., various EMS) start to process the request followed by communicating the
response implies a certain minimum delay which often varies depending on the complexity
of the request and the accessed systems. In general, this approach is especially suited for
interactive applications interfacing directly with the user.

3.2.4 Continuous Notifications (Push)

Push-based systems allow applications to specify an interest in data updates which are
then automatically transferred from the data sources to the intended recipients. Especially
periodic requests known in advance (e.g., energy consumption every 15 minutes) can be
efficiently scheduled and combined to achieve better overall throughput of the system.
Additionally, since the request is already known in advance, the delay between the time
information is available at the source and is transported to the consumer can be reduced.
This approach is well suited for most monitoring and management application that required
regular periodic updates of the information of the subsystems to act in a timely manner
based on their predefined behaviour specifications.

3.2.5 Comparison

Considering node-centric and data-centric communication, both approaches are viable
solutions for both accessing groups of nodes and individual nodes, but each solution
requires more work for the user and limit optimization capabilities in the network when
applied to the “wrong” use case.

In SmartKYE the data of the energy management systems are much more important to
enable functions like monitoring or prediction than the individual devices themselves which
is an argument for a data-centric approach. However, there is also a need to access
individual devices for example to change configuration parameters or control settings,
which is best approached by a node-centric approach. To provide maximum flexibility and
ease-of-use for the user while preserving the capability for optimizations, the SmartKYE
communication supports both approaches.

Similarly, there are good reasons for both pull and push communication. On the one hand,
the interactive features of Business Cockpit can best be served with on-demand requests
for data. On the other hand, a significant part of the Management and Control Cockpit deals
with always-on functionality and can make good use of the pull paradigm.

While largely orthogonal concepts, one important combination is the publish/subscribe
paradigm. With a publish/subscribe mechanism every producer of data does not send its
data to consumers directly, instead the producers only offers the data for publishing. Every
consumer that is interested in a certain set of data can subscribe to these publications. As
soon as new data is published, it is sent to all the subscriber of the data for further
processing (cf. Figure 4).

Design and Preliminary Specification of the OESP 19

Figure 4: Publish/Subscribe System, Logical View

To make it easier for subscribers to receive a certain set of data, the publish/subscribe
mechanism supports filters. With this every data can be published to a certain channel.
Every subscriber of a channel will receive every data of this channel as soon as it is
available. In addition to channels (sometimes called topics) that identify the type of data, we
also support the specification of periodic updates. In the context of SmartKYE, the metric
types and the attribute types are the implicit channels that consumers can subscribe to.

3.2.6 API Mapping

The different communication paradigms are mapped to the API in two ways: the support for
both data-centric and node-centric communication of provided by the flexible nature of the
EntityFilter (c.f., D2.1) structure which is used in almost all API calls to specify the targets of
the call. This structure supports both the specification based on entities and their
relationships, i.e., node based selection, and the data-oriented selection based on which
metrics or attributes an entity provides.

Second, both the metric and attribute APIs provide functions to subscribe to notifications.
These complement the function to request information on-demand and, thereby, provide for
both push and pull based access to the data of the EMS. Likewise, the CEP engine
supports both the on-off execution of a processing graph and running it as a continuous
operation.

Publisher/
Subscriber

Publisher/
Subscriber

Publisher/
Subscriber

Publisher/
Subscriber

Publisher/
Subscriber

Publisher/
Subscriber

Publication

Publication

Advertisement

Subscriptions

Publication

Design and Preliminary Specification of the OESP 20

3.3 EMS Service Endpoint Description

As described in D2.1, most services of the OESP are mirrored by the energy management
systems: the entity, metric and attribute APIs are also implemented by the connectors that
interface with the EMS. Only the publish/subscribe mechanism are differently implemented
as described in the next section.

From the perspective of the platform, an EMS or any other data source is responsible for
one or more root entities and their children. However, to increase the flexibility, the OESP
allows distributing the responsibility for different metrics and attributes among various data
providers (c.f. Figure 5). This would for example allow an ESCO to provide price and cost
information for its clients or to outsource the prediction of production to dedicated service
providers.

Figure 5: EMS Service Endpoint Description (OESP components in blue and green)

Additionally, the OESP allows specifying that a CEP processing graph is used to provide
the information for certain metrics. This allows the reuse of common processing rules for
example to calculate the cost based on price and consumption information from other
servers or to forecast energy consumption based on historical information.

Moreover, all services can of course in turn make use of all platform APIs to provide the
requested data.

By using the CEP services either directly or indirectly, the information providers can benefit
from distributed nature of the platform and make scale the use of CEP engines based on
the current demand.

In addition to specifying the functional endpoints, the EMS also specifies the authentication
requirements. On the one hand, for complete flexibility that allows integrating authentication
and authorization in the existing infrastructures of the different institutions, the EMS may
specify an OAuth 2.0 Authorization Server (Internet Engineering Task Force (IETF), 2012)
that will be consulted for requests by any clients. On the other hand, to simplify EMS
implementations, they may also rely on the user authenticated by the OESP.

Entity
Service

Metric
Service 1

Metric
Service 2

Attribute
Service

Attribute +
Entity API

Metric
API

Registry

CEP
Engine

Client/
Cockpit

Client/
Cockpit

Client/
Cockpit

OESP

Design and Preliminary Specification of the OESP 21

3.4 Publish/Subscribe Service

For the publish/subscribe service, there are two different use cases to consider. For
metrics, we assume clients to specify their interest for periodic updates of (potentially
aggregated) measurements. This does not require any special support by the EMS as the
OESP can schedule its operation to query this information on-demand and – considering
the information needs from multiple clients – efficiently distribute this information.

For the attribute service, however, the clients request notifications about update of state
changes. These state changes can occur at any time and, therefore, the EMS must provide
additional functionality to notify the OESP about these changes. However, to simplify the
complexity for the EMS considerably, the logic when to forward these updates to which
clients, is encapsulated in the OESP. To reduce the communication, we assume that in
most cases the management functionality will be co-located with the EMS together with the
connector for the OESP.

3.5 Grouping Service

The grouping API is omitted from the previous figures to simplify the illustrations. While
similarly independent as the metric, entity and attribute service, we nevertheless expect to
co-locate these services for all deployments.

In Figure 6, we show the API of the entity grouping service as defined in D2.1. The
grouping service is special with regard to the need for global information: the defined
groups are available at all platform instances. However, by omitting the functionality to
change groups, we can severely reduce the consistency requirements imposed by this
service. Instead of forcing a synchronous update of groups to prevent errors that use wrong
definitions, this approach focuses on eventual consistency. Whenever a group is used that
is not currently known to the instance of the platform, the group service is tasked with
resolving this group. Depending on the implementation this may involve accessing a central
authoritative service, a peer-to-peer resolver, or a distributed storage system.

When a group is deleted, this information is propagated to all OESP instances. However,
the worst case is that a group can be used for a longer time than intended, but it is
impossible that a wrong definition of a group is used.

In any case, a group definition can contain an arbitrary list of entities spanning multiple
energy management systems.

Figure 6: Services for Entity Grouping

3.6 Conclusions

The primary non-functional considerations for the OESP are the federated nature of the
SmartKYE system and the goal to seamlessly scale arbitrarily sized deployments.

Both considerations influenced the API specification to consider smart EMS as the primary
interaction partners and to largely mirror the APIs between the platform and its clients and
between the platform and the data sources.

To tackle scalability in general and the suitability for Infrastructure as a Service and

Design and Preliminary Specification of the OESP 22

Platform as Service deployments, the design considers a fully distributed system with
potentially multiple instances of the platform core services and CEP engines. These
systems rely on a minimum of shared state to increase their isolation and, therefore, the
scalability of the system.

Design and Preliminary Specification of the OESP 23

4 High-Performance Web Services

In this section, we discuss alternatives and enhancements for the layers of the web service
stack to increase the efficiency and performance of the interactions between the OESP and
its clients and data sources.

4.1 HTTP 1.1 Alternatives and Developments

While HTTP enjoys almost universal adoption, primarily the evolution of web applications
involving more data and requiring reduced latencies have spurred the search for
alternatives in recent years. To guarantee operability we do not consider the development
of new solutions but instead plan to follow closely the evolution of the approaches
described below.

4.1.1 SPDY

SPDY (The Chromium Projects) is an application-level protocol aiming primarily at reducing
latency for web applications. It uses the following approaches to reduce latency and
bandwidth requirements compared with HTTPS:

 Use one TCP connection for multiple request-response interactions

 Parallelize multiple requests to alleviate the impact of long delays

 Compress headers

 Omit identical header between multiple requests

 Require content compression and encryption

 Allow communication initiated from the server

For the OESP, the most relevant advantage is the header compression as for usually small
messages, e.g., notifications of the publish/subscribe mechanism, the HTTP header incurs
a very significant overhead.

4.1.2 Microsoft S+M

Microsoft S+M (Microsoft) is based on SPDY and follows similar goals. In addition to
integrating the framing from WebSockets, this approach considers resource constrained
mobile services and reduces the requirements of SPDY for CPU-intensive operations like
encryption and compression.

4.1.3 QUIC

In contrast to the previous approaches that are based on TCP and provide more
evolutionary approaches to improve HTTP, QUIC (Roskind, 2013) is based on UDP and
tries to further reduce the delay incurred by TCP. However, in contrast to SPDY, QUIC is a
more recent and experimental effort and does not yet enjoy the adoption of SPDY of third
party applications and servers.

4.1.4 HTTP 2.0

In the last year, the IETF started the process to develop the successor to the HTTP 1.1
standard from 1999. After considering multiple proposals including SPDY and Microsoft
S+M, the committee settled on SPDY as the starting point. Currently, the IETF is planning
for winter 2014 for submitting the draft proposal while a first version has already been
published to facilitate the evaluation of real implementations.

4.1.5 Conclusions

Since SPDY already enjoys relatively widespread adoption and several mature

Design and Preliminary Specification of the OESP 24

implementations are available, and it is the foundation for the planned HTTP 2.0 standard,
we plan on evaluating the system with SPDY. Depending on the availability of the other
approaches in the next year – foremost HTTP 2.0 – we will also investigate alternatives for
the evaluation.

4.2 HTTP Content Compression

While the important alternatives to HTTP feature compression not only of the content but
also of the headers, their use is still limited to selected implementations. HTTP content
compression, however, is almost universally available and part of the HTTP content
negotiation. While various compression algorithms are available, gzip is the most widely
implemented scheme.

Since gzip is based on the compression of repeated byte sequences, it is well suited to
reduce the overhead of XML tags and we expect its use in the complete system.

4.3 XML Specific Compression

In contrast to the lossless HTTP content compression algorithms that are generally
applicable to all data, there are also several approaches to exploit the knowledge of XML
syntax and schemas to reduce the size of the exchanged messages.

4.3.1 Fast Infoset

Fast Infoset is a standard by both ISO and the ITU-T (ITU Telecommunication
Standardization Sector) for reducing both the size and processing overhead of XML
documents. It exploits the syntax of XML and based on ASN.1 (c.f., below) provides a much
more efficient encoding.

4.3.2 Efficient XML Interchange (EXI)

Efficient XML Interchange is a recommendation of the W3C with a similar goal as Fast
Infoset. Compared to FI, it also uses information from the XML schema associated with an
XML document to improve the encoding. While this requires the schema to be known both
by the encoder and decoder, this does not pose a significant problem for the use in the
SmartKYE project as the data model is known by all entities involved.

4.3.3 Conclusions

While both discussed approaches promise not only reduced size but also reduced
processing time at least for the decoder, their adoption and the availability of
implementations is very limited. There also does not seem to be a clear favorite of the
solutions. Therefore, we are currently planning to follow the development in this area and
depending on the results using the other solutions – foremost the HTTP content
compression – decide in the performance optimization phase the need for evaluating one of
the proposals.

4.4 XML/SOAP Alternatives

While the previous section discuss the replacement or enhancements of the different layers
of the SOAP-over-HTTP stack, in this section we consider complete alternatives. In the last
years, the RESTful architecture has gained attention mostly in the area of web applications
as the communication mechanism between browser and server. This approach is based on
using the HTTP verbs GET, POST, PUT and DELETE to implement CRUD-oriented
(create, read, update and delete) APIs.

Compared to SOAP, this reduces the overhead incurred by the SOAP envelope
considerably. Additionally, it allows using arbitrary formats for the content of the requests
and responses. We shortly discuss three alternatives to XML in the following.

Design and Preliminary Specification of the OESP 25

4.4.1 Javascript Object Notation (JSON)

4.4.1.1 Overview

JSON (JSON) (Aziz & Mitchell, 2007) is a lightweight data exchange format specified by
Douglas Crockford in 2002. By now it is described in RFC 4627. The goal to develop this
language was to have a very simple, easy to read/write or parse/generate data exchange
format in the JavaScript literal object notation. The language was first called JSML
(JavaScript Message Language) later the name was changed due to a name conflict to
JavaScript Object Notation.

JSON displaced XML in some areas as data exchange format. It can be used in Ajax
instead of XML; Yahoo uses it for some Web services (since December 2005) and Google
offers JSON feeds for its GData web protocol (since December 2006).

Compared to XML as another data language, JSON is much easier to read and write
because there is no need for tags.

4.4.1.2 Language

JSON is a subset of JavaScript literal object notation by design (ECMA 262 3rd edition
1999). That means JSON can be parsed by JavaScript implementations very easy.

Since JSON is derived from JavaScript their syntax are almost the same. In fact every
JSON data can be parsed with JavaScript using the “eval” function. For example for parsing
JSON data directly into a JavaScript Object:

var myObj = eval("(" + JSON-Data + ")");

Due to conflicts with reserved JavaScript keywords, JSON has much stricter rules for
literate values. For example the name of an object member in JSON has to be a valid
JSON string and so has to be enclosed by quotation marks.

JSON builds on two structures that are seen as the intersection of the most modern
programming languages:

1. Collection of name/value pairs like objects, records, structs, hashes, property lists.
From now on only called objects.

2. Ordered List for values like arrays, vectors, lists. From now on only called arrays.

JSON Objects are unordered sets of name/value pairs. Objects are enclosed by curly
brackets. Names and values are separated trough a “:” and the name, value pairs
themselves are separated by “,”.

JSON Arrays are ordered collection of values. Arrays are enclosed with closed brackets.
Values inside the array are separated by “,”.

The definition of the implied structures:

JSON names or strings are collections of Unicode characters enclosed by double quotes.

JSON values can be strings in double quotes, numbers, Boolean values, null, objects or
arrays. These structures can be nested.

JSON numbers are like C or Java numbers but it is not possible to define them in
hexadecimal format.

4.4.1.3 Encoding

There is no special encoding for JSON data. This means the data will be transmitted as

Design and Preliminary Specification of the OESP 26

plain text. But JSON data needs less space written to a file (and so for transmitting)
compared to XML. That is because there is no use for tags which results in less overhead
compared to XML.

There exist approaches for a binary encoded serialization on top of JSON like BSON
(Binary JSON (BSON)) or BISON (Binary Interchange Standard and Object Notation
(Jäger, 2007)). In these approaches the data type of a JSON stream is binary encoded, but
the value itself is not. Because of the plain text values these approaches have nearly no
advantage over JSON in their consumption of space.

4.4.2 ASN.1

4.4.2.1 Overview

ASN.1 (Abstract Syntax Notation One) is a notation used for describing data structures and
their physical representation for transmitting in a programming language independent way
(ITU) (The ASN.1 Consortium, Inc., 2003). The first work for developing ASN.1 began 1982
in the International Telegraph and Telephone Consultative Committee (CCITT, French
acronym). In 1984 ASN.1 became an ITU-T ASN.1 Standard and in 1986 an ISO standard.
The cryptic name (ASN dot 1 instead of ASN1) was chosen to avoid confusion with ANSI –
the American National Standards Institute.

The ISO 8824 standard is split into four parts:

- ISO 8824-1 | ITU-T X.680: Specification of basic notation.
- ISO 8824-2 | ITU-T X.681: Information object specification.
- ISO 8824-3 | ITU-T X.682: Constraint specification.
- ISO 8824-4 | ITU-T X.683: Parameterization of ASN.1 specifications.

In ASN.1 encoding and data definition is done in two separate ways. There also exists the
ISO 8825 standard for encoding this involves amongst others:

- ISO 8825-1 | ITU-T X.690: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

- ISO 8825-2 | ITU-T X.691: Specification of Packed Encoding Rules (PER)
- ISO 8825-3 | ITU-T X.692: ASN.1 encoding rules: Specification of Encoding

Control Notation (ECN)
- ISO 8825-4 | ITU-T X.693: ASN.1 encoding rules: XML Encoding Rules (XER)

ASN.1 also allows the specification of custom encoding for physical representation. This
can be done through an independent language: Encoding control notation (ECN).

ASN.1 is nowadays a widely used notation applied in many different applications,
organizations or projects like AT&T, Intel, IBM, Microsoft, 3COM, American Express, GTE,
MasterCard, VISA for Telephony, Audio & Video over the Internet, Manufacturing, Network
Management and so on.

4.4.2.2 Language

Design and Preliminary Specification of the OESP 27

Figure 7: ASN.1 Elements

ASN.1 allows specifying the information abstraction as well as the encoding for data. The
information abstraction is done through abstraction syntax. The encoding is done through
encoding rules that translates the abstraction syntax into transfer syntax.

ASN.1 has four classes of data types

- UNIVERSAL
This class is restricted to the ASN.1 built in types. All types of this class have to
be distinguishable from all other data types.

- APPLICATION
This class represents user specific data types that are widely used within a
certain context. These types are usable by a set of applications.

- PRIVATE
This class represents user specific data types that are defined for the use in
organizations or by countries for private use.

- CONTEXT-SPECIFIC
This class represents further user and context specific data.

ASN.1 allows type and value definition. The assignment is done through “:==”. The
following data types can be used as UNIVERSAL data types:

Basic types:

- BOOLEAN: True or False
- INTEGER: boundless size
- ENUMERATED: Custom values
- REAL: x*y^z with y = [2, 10]
- BIT STRING: String of bits. The length is unbounded
- OCTET STRING: Binary data. Length is a multiple of eight.
- NULL: Null
- PrintableString: String with only printable characters
- UTF8String: String of UTF8 characters
- OBJECT IDENTIFIER: Name information objects

Complex types:

- SEQUENCE: Sequence, different types
- SEQUENCE OF: Sequence, all the same type

Design and Preliminary Specification of the OESP 28

- SET: Set, different types
- SET OF: Set, all the same type
- CHOICE: Specify a collection of distinct types from which to choose one type

Subtype Declaration:

ASN.1 allows subtype declaration. It is possible to specify certain values directly as well as
a range of values using “SIZE”.

- For single Values:
o oneTwoThree ::= INTEGER (1 | 2 | 3)

- For sets of values (INCLUDES):
o oneTwoThreeFour ::= INTEGER (INCLUDES oneTwoThree | 4)

Definitions of types and values can be grouped together in “modules”. Each module is an
unordered set of related definitions with unique identifier. A module consists of: The name
of the module, identifier (sequence of non-negative numbers), “:==” and the body of the
module surrounded by BEGIN and END.

4.4.2.3 Encoding

Encoding is done separately from the data specification within the abstract syntax.
Encoding can be done through predefined encoding rules, or with custom specifications.
The most encoding rules use the TLV (Type-Length-Value) approach to encode the data
(Within ASN.1 TLV is also known as ILC: Identifier-Length-Content).

TLV Approach:

Figure 8: TLV Encoding

With the TLV Approach every data element is separately encoded.

- Type: The type of the encoded element.
- Length: The length of the encoded element.
- Value: The value of the encoded element. If the encoded element is a complex

type the included elements also have type length and value fields. This means
recursion is possible.

Functionality of Predefined Encoding Rules (BER, PER):

BER (Basic Encoding Rule):

BER is a very simple encoding rule for ASN.1 using the TLV approach. The TLV type-field
of 8 Bit is separated into three different sub-fields, specifying the TLV-value:

- 2 Bits class type, possible values: UNIVERSAL, APPLICATION, CONTEXT-
SPECIFIC, PRIVATE

- 1 Bit type complexity, possible values: primitive or complex types

Design and Preliminary Specification of the OESP 29

- 5 Bits sub type, possible values for UNIVERSAL subtypes are: Boolean,
Integer, Bit-String...

Length:

The Length field (8 Bits) specifies the length of the data of the value field. BER supports
three different ways to save the length of the data.

Short Form:

The length field starts with “0”. There are 7 Bits left to specify the data length.

Long Form:

The length field start with ”1”. 7 Bits are used to specify the count of byte-blocks that will be
used to specify the length of the data (0, 127 reserved and cannot be used for this
purpose). This means the length field could be up to 126 Byte, which means there are 1008
Bits to encode the data length. This allows a data length up to 2,74306*E303 in decimal.

Indefinite Length: starts with 10000000 the end of the data is specified through two 8 Bit-
blocks with the containing only zero bits.

Value:

This field encodes the data of the type. This is also given in 8 Bit blocks. To represent a
Boolean false for example this fields has 8*0

This means for example, the full encoding for a Boolean value needs 3 Byte: One Bit type,
one Bit Length and one Bit data.

PER (Packed Encoding Rules):

PER is another encoding rule for ASN.1 that targets small encoding size. TLV is not used in
this approach. Instead the type of the data is only given if it is necessary (but length and
value fields are always used). If the type can be discovered by context, the type field will be
dismissed. Another distinguishes between BER and PER is that PER do not use a fixed
field size of 8 Bits. The length-field is smaller if less than 8 Bits are needed to specify the
length of the data. Also the size of the value field has a variable length.

There are many more encoding rules for ASN like XER (XML Encoding Rule) or GSER
(Generic String Encoding Rules) for human readable formats.

ASN.1 also allows specifying custom encoding rules with ECN (Encoding Control Notation):

ECN is developed and maintained by ITU-T as ITU Recommendation X.692 (ISO/IEC
8825-3). With ECN it is possible to design a complete new set of encoding rules for ASN.1
data types, or to overload/specialize encoding rules from existing definitions like BER or
PER.

4.4.3 Protocol Buffers

4.4.3.1 Overview

In 2008 Google released “Protocol Buffers”, a solution for serializing and deserializing of
objects for transporting data over networks or storing them (Google). Protocol Buffers have
been used internally at Google since 2001 and the revised version 2.0 was the first to be
published. Protocol buffers message types are defined in text files using a simple language
and code generators produce the necessary code for serializing and deserializing objects of
that type. Google cites forward and backward compatibility and small data size (especially
compared to XML) as primary goals for the development of their solution required by the

Design and Preliminary Specification of the OESP 30

large number of systems and incremental updates on them in their data centres.

4.4.3.2 Language

Protocol buffers message types are defined in simple text files with the “.proto” extension.
To some extent, the language is related to structs in C: a message (comparable to a struct)
consists of fields and is principally a flat structure. Each field has a type and a name.
However, by using previously defined message types, hierarchical structures can be
constructed. Additionally, there is an “enum” construct that allows constructing
enumerations. Fields of this type can have one value based on such a list. Instead of
arrays, protocol buffers support “repeated” elements that support an arbitrary number of
values of the given type.

The approach differs from C in two fundamental parts: each field must be assigned a
unique numbered ID called tag. This tag is used when serializing data and is also used to
enable backward compatibility. Second, it is possible to mark fields as required or optional.
Optional fields are allowed to appear in serialized messages but can also be omitted. It is
also possible to define default values for these fields. This capability is also a key element
for ensuring forward and backward compatibility.

Protocol buffers support the following data types. Different encoding rules for the various
integer types are the reason to have seemingly redundant types and are explained in the
next section.

4.4.3.2.1 MODIFYING MESSAGE TYPES

One rare capability of protocol buffers is the possibility to change message types while still
preserving backward and forward compatibility.

The most important rule is not to change the numeric tags. While the names of the fields
are only used for the generated code, the tags are used for serialization. Second, additional
fields should be optional or repeated. Although the serialization code ignores unknown
fields and, thus, old implementation do not have to be changed if fields are added, the new
code would report an error if a new required field is missing when receiving messages from
an old system. The C++ and Java implementations even preserve unknown fields so that
legacy systems can be on the path between current systems without interfering with the
new message fields.

The language guide in the documentation for protocol buffers lists more rules for example
even some type changes are allowed.

4.4.3.2.2 MODULARITY

Protocol buffers provide two functionalities for increasing modularity. First, it is possible to
import the definitions of other .proto files to use the types defined there. Second, protocol
buffers support namespaces in a similar way to Java: each proto file can define a package
to prevent clashes when importing more than one file. These names are solely used to
declare namespaces or packages when generating C++ and Java code respectively.

4.4.3.3 Encoding

One primary goal of protocol buffers is an efficient encoding. For this reason, some integer
data types are encoded with a variable length. The most important primitive is the varint
encoding.

4.4.3.3.1 VARINTS

The goal of varints is to allow smaller numbers to use less space and, thereby, save
memory when the values are usually small. This applies for example also to the tag
numbers that are usually very small integers. The encoding used by protocol buffers works
on the byte level. The most significant bit (msb) of each byte indicates if the following byte
has to be interpreted as part of the same number. The remaining 7 bits of each byte are

Design and Preliminary Specification of the OESP 31

used for the actual value. The value bits of all connected bytes are concatenated (least
significant bits are encoded first) and result in the actual value as shown in the following
examples. The msb is shown in bold.

Value Encoding (binary) Concatenation/value (binary)

1 0000 0001 0000001

128 1000 0000 0000 0001 000001000000

300 1010 1100 0000 0010 00000100101100

1048575 1111 1111 1111 1111 0011 1111 011111111111111111111

Table 1: Protocol Buffers Varint Example

This encoding and decoding process can be implemented very efficiently by using shift
operations and the omission of alignment and padding allows for a space efficient solution.

However, the previous encoding is not very efficient for negative values. Since CPUS
represent negative values close to 0 as very large positive numbers (e.g., -1 =0xffffffff for
32-bit integers), encoding these values takes a lot of space. Therefore, protocol buffers also
introduce the so-called ZigZag encoding. For this encoding, numbers close to 0 are
represented as small positive values and encoded using the varint approach. The name
ZigZag stems from the sequence of the encoding alternating between positive and negative
numbers.

Again, this can be very efficiently done. A signed 32-bit value is converted to the encoding

value with the following simple expression in C: (n << 1) ^ (n >> 31)

4.4.3.3.2 OTHER DATA TYPES

Besides the varint types, protocol buffers support also fixed-size integers with 32 or 64 bits
stored in little-endian byte order. Additionally, floats and doubles are simply stored as 32
respectively 64 bits values as well.

The string type and the bytes type consist of a varint encoded length followed by the
appropriate number of bytes.

Enums are encoded just by using the integer value and serializing it as a varint. Bools are
also encoded as a varint of the values 1 or 0.

Therefore, there are the following types:

Encoding type Type-ID Used for

varint 0 int32, int64, uint32, uint64, sint32, sint64, bool, enum

64-bit 1 fixed64, sfixed64, double

Length-delimited 2 string, bytes, embedded messages, packed repeated fields

32-bit 5 fixed32, sfixed32, float

Table 2: Protocol Buffer Wire Types

The type IDs 3 and 4 are deprecated.

The different possible encodings are the reason for the availability of multiple integer types.
The fixed32/64 and sfixed32/64 types are better used when the actual value range is big
and also allow for a slightly speedier encoding. The difference between int32 and sint32
(and int64 and sint64 respectively) is the encoding of negative values: int32 are encoded as
varints while sint32 values are encoded using the Zigzag varint type which is better
optimized for negative values.

Design and Preliminary Specification of the OESP 32

4.4.3.3.3 MESSAGE ENCODING

A message is encoded as a number of key-value pairs. The key of each field is the tag
defined by the developer in the .proto file appended at the encoding type-ID (using 3 bits)
with the following expression (in C): key = (tag << 3) | type_id

Therefore, a maximum number of 8 different encoding types are supported.

This key is then encoded as a varint followed by the value encoded in the appropriate
format. Since the values of tags are usually small, most keys only require one byte.

A message consists of a number of key-value pairs. There is neither padding nor alignment.
There is also no additional meta-data such as the overall size of the message, which
instead must be provided when calling the deserialization function, or elements such as a
CRC. If such meta-data is required, this must be handled by the application.

4.4.3.3.4 REPEATED FIELDS AND OPTIONAL FIELDS

Optional fields can be simply left out. If a message does not contain the key-value pair for
an optional field, the field is indicated as empty. If a default value has been specified in the
.proto file, this value is used by the deserializing function. Thus, the default value does not
need to be transmitted over the wire.

There are two encodings supported for repeated fields. The older approach just allows
multiple occurrences of the same key within a message. The values form an array based on
the sequence in the encoding. An array of size 0 is simply omitted when serializing a
message and, thus, does not use any space at all.

A newer solution allows for a more efficient encoding but requires explicit request by the

developer in the .proto file by specifying the option [packed=true]. In this case, the key is

only specified once followed by the varint-encoded number of bytes used by this field. The
values are then encoded directly following each other using the respective type.

4.4.3.3.5 NESTED MESSAGES

Nested messages are encoded like strings: the tag of the field combined with the wire type
length-delimited is used and the total number of bytes used for the content of the nested
message is used as the length. The fields of the nested message (possibly containing
nested messages as well) are serialized following the key.

4.4.4 Conclusions

While the REST ecosystem has evolved considerably in the last years, the maturity,
prevalence and interoperability of SOAP based solutions are still far ahead. Therefore, we
chose SOAP as the foundation for the platform.

However, depending on the results of the first prototype, we will consider the use of an
alternative for the internal communication between components of the OESP.

Additionally, it would be possible to develop alternative APIs for the OESP based on other
content encodings. However, while JSON has gained significant popularity for web
application – not least due to its origin from JavaScript – the omission of a schema
language and the limited gain in efficiency compared to XML when using compression, the
use of a more efficient schema-supported binary format like Protocol Buffers or ASN.1
seems to be more suitable.

4.5 API Design for High Performance

Although most discussed solutions reduce the overhead incurred by the request-response
mechanism, it is not possible to remove it completely. Therefore, as the most important
approach to increase the performance, we designed the OESP APIs to inherently support
batching operation. For example, it is possible to specify multiple metric types or attribute

Design and Preliminary Specification of the OESP 33

types together with complex specifications of which entities are involved when requesting
information from the EMS. This approach reduces the number of roundtrips between the
clients and the OESP as well as between the OESP and the EMS and, therefore, both the
delay and bandwidth requirements.

Second, the metric API allows the spatial and temporal aggregation of measurements to
just transmit the necessary information to the clients.

Third, decoupling the applications from the data sources does not only simplify their
implementations but also allows the platform to optimize the data flow among the various
entities. This potential is further increased when using the publish/subscribe paradigm.

However, while this design decisions offers great potential to reduce the overhead, it must
be actively exploited by the applications. It is therefore complementary to the approaches
discussed before.

4.6 Conclusions

There are several potential starting points to improve the performance of web services. We
are planning to enable the solutions to optimize the web service stack where
implementations are widespread and the interoperability is not limited: SPDY and HTTP
Content Compression. Additionally, depending on the experiences during the development
and first evaluation phase as well as the evolution of the other discussed technologies, we
will consider further optimizations at certain point in the system.

These optimizations for web services are complemented by the API design which allows
applications to reduce the overhead considerably and enables the application to efficiently
control the data flow between the entities involved in the system.

Design and Preliminary Specification of the OESP 34

5 Conclusions

In this document, we present the preliminary specification and design for the Open Energy
Service Platform. This document is closely related to and complements D2.1, which
describes the overall architecture of the SmartKYE system and the interfaces provided by
the OESP and by the energy management systems.

Starting from an analysis of the requirements gathered in WP1 and a discussion of
important deployment considerations, we present the specification and design of the OESP.
We discuss the decomposition of the OESP into individually deployable components to
increase the scalability of the system. We also describe the communication mechanisms
provided by the platform followed by considerations for the EMS descriptions and grouping
service.

The second major part of the document discusses possibilities to increase the efficiency
and performance of web services. We describe optimizations and enhancements for
several layers of the web service stack.

The final version of the specification and design will be delivered in D3.3.

Design and Preliminary Specification of the OESP 35

6 References and Acronyms

6.1 Acronyms

Acronyms List

ABB Architecture Building Block

AC Alternating current

ADF Architecture Development Framework

ADM Architecture Development Method

API Application Programming Interface

B2B Business-to-Business

BAS Building Automation Systems

BC Business Cockpit

BIM Building Information Modelling

BMS Building Management System

BO&C Building Optimization and Control

CEP Complex Event Processing

COTS Commercial Off-The-Shelf

DC Direct current

DER Distributed Energy Resources

DM Dissemination Manager

DR Demand Response

DSOs Distribution System Operator

EC European Commission

EGS EMS of Generator System

EISP Energy Information Service Provider

EMS Energy Management Systems

EPL EMS of Public Lighting

ESB Enterprise Service Bus

ESCOs Energy Service Company

ETL Extract-Transform-Load

ETS EMS of Traffic System

EU European Union

EV Electric vehicle

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HV High voltage

HVAC Heating ventilation and air conditioning

IaaS Infrastructure as a Service

Design and Preliminary Specification of the OESP 36

ICT Information and communication technologies

ICT4EE ICT for Energy Efficiency

IREEN The ICT Roadmap for Energy-Efficient Neighbourhoods

IT Information Technologies

J2EE Java 2 Platform Enterprise Edition

JMS Java Message Service

KPI Key Performance Indicator

MCC Monitoring and Control Cockpit

MMI Man Machine Interface

MUN Municipality

MV Medium voltage

NFRs Non-Functional Requirements

SmartKYE Smart grid Key Neighbourhood Indicator Cockpit

OASIS
Organization for the Advancement of Structured Information Stand-
ards

OESP Open Energy Service Platform

OMG Object Management Group

PaaS Platform as a Service

PHEV Plug-in Hybrid Electrical Vehicles

PLS Public lighting system

PPP Public-Private Partnership

PV Photovoltaic

QoS Quality of Service

RA Reference Architecture

RES Renewable Sources

REST Representational State Transfer

SaaS Software as a Service

SCADA Supervisory Control and Data Acquisition System

SLA Service-Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TOGAF The Open Group Architecture Framework

TS Time Series

TS Data Time Series Data

UC Use Case

URL Uniform resource locator

WP Work packages

WSDL Web Services Description Language

Design and Preliminary Specification of the OESP 37

6.2 References

Aziz, A., & Mitchell, S. (2007). An Introduction to JavaScript Object Notation (JSON) in
JavaScript and .NET. From http://msdn.microsoft.com/en-us/library/bb299886.aspx

BSON. (n.d.). From http://bsonspec.org/

Google. (n.d.). Protocol Buffers. From http://code.google.com/apis/protocolbuffers/

Internet Engineering Task Force (IETF). (2012). The OAuth 2.0 Authorization Framework.

ITU. (n.d.). Introduction to ASN.1. From http://www.itu.int/ITU-T/asn1/introduction/index.htm

Jäger, K. (2007). From Introducing BISON - Binary Interchange Standard and Object
Notation : http://kaijaeger.com/articles/introducing-bison-binary-interchange-
standard.html

JSON. (n.d.). From http://www.json.org/

Microsoft. (n.d.). Microsoft Speed + Mobility . Retrieved 10 15, 2013, from
http://tools.ietf.org/html/draft-montenegro-httpbis-speed-mobility-02

Roskind, J. (2013, 06 24). QUIC: Design Document and Specification Rational. Retrieved
10 15, 2013, from https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-
saqsQx7rFV-ev2jRFUoVD34/edit

The ASN.1 Consortium, Inc. (2003). ASN.1 developments. From
http://www.asn1.org/news.htm

The Chromium Projects. (n.d.). SPDY: An experimental protocol for a faster web. Retrieved
10 15, 2013, from http://www.chromium.org/spdy/spdy-whitepaper

